5c0x

From Proteopedia
Revision as of 14:18, 10 January 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Structure of a 12-subunit nuclear exosome complex bound to structured RNAStructure of a 12-subunit nuclear exosome complex bound to structured RNA

Structural highlights

5c0x is a 10 chain structure with sequence from Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.812Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RRP45_YEAST Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. RRP45 is part of the hexameric ring of RNase PH domain-containing subunits proposed to form a central channel which threads RNA substrates for degradation.[1] [2]

Publication Abstract from PubMed

The eukaryotic exosome is a conserved RNA-degrading complex that functions in RNA surveillance, turnover and processing. How the same machinery can either completely degrade or precisely trim RNA substrates has long remained unexplained. Here we report the crystal structures of a yeast nuclear exosome containing the 9-subunit core, the 3'-5' RNases Rrp44 and Rrp6, and the obligate Rrp6-binding partner Rrp47 in complex with different RNAs. The combined structural and biochemical data of this 12-subunit complex reveal how a single-stranded RNA can reach the Rrp44 or Rrp6 active sites directly or can bind Rrp6 and be threaded via the central channel towards the distal RNase Rrp44. When a bulky RNA is stalled at the entrance of the channel, Rrp6-Rrp47 swings open. The results suggest how the same molecular machine can coordinate processive degradation and partial trimming in an RNA-dependent manner by a concerted swinging mechanism of the two RNase subunits.

RNA degradation paths in a 12-subunit nuclear exosome complex.,Makino DL, Schuch B, Stegmann E, Baumgartner M, Basquin C, Conti E Nature. 2015 Jul 29. doi: 10.1038/nature14865. PMID:26222026[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P. The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev. 1999 Aug 15;13(16):2148-58. PMID:10465791
  2. Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
  3. Makino DL, Schuch B, Stegmann E, Baumgartner M, Basquin C, Conti E. RNA degradation paths in a 12-subunit nuclear exosome complex. Nature. 2015 Jul 29. doi: 10.1038/nature14865. PMID:26222026 doi:http://dx.doi.org/10.1038/nature14865

5c0x, resolution 3.81Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA