8ohr

From Proteopedia
Revision as of 13:25, 10 January 2024 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal structure of human heparanase in complex with glucuronic acid configured 3-geminal diol iminosugar inhibitorCrystal structure of human heparanase in complex with glucuronic acid configured 3-geminal diol iminosugar inhibitor

Structural highlights

8ohr is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HPSE_HUMAN Endoglycosidase that cleaves heparan sulfate proteoglycans (HSPGs) into heparan sulfate side chains and core proteoglycans. Participates in extracellular matrix (ECM) degradation and remodeling. Selectively cleaves the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying either a 3-O-sulfo or a 6-O-sulfo group. Can also cleave the linkage between a glucuronic acid unit and an N-sulfo glucosamine unit carrying a 2-O-sulfo group, but not linkages between a glucuronic acid unit and a 2-O-sulfated iduronic acid moiety. It is essentially inactive at neutral pH but becomes active under acidic conditions such as during tumor invasion and in inflammatory processes. Facilitates cell migration associated with metastasis, wound healing and inflammation. Enhances shedding of syndecans, and increases endothelial invasion and angiogenesis in myelomas. Acts as procoagulant by increasing the generation of activation factor X in the presence of tissue factor and activation factor VII. Increases cell adhesion to the extacellular matrix (ECM), independent of its enzymatic activity. Induces AKT1/PKB phosphorylation via lipid rafts increasing cell mobility and invasion. Heparin increases this AKT1/PKB activation. Regulates osteogenesis. Enhances angiogenesis through up-regulation of SRC-mediated activation of VEGF. Implicated in hair follicle inner root sheath differentiation and hair homeostasis.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Publication Abstract from PubMed

Siastatin B is a potent and effective iminosugar inhibitor of three diverse glycosidase classes, namely, sialidases, beta-d-glucuronidases, and N-acetyl-glucosaminidases. The mode of inhibition of glucuronidases, in contrast to sialidases, has long been enigmatic as siastatin B appears too bulky and incorrectly substituted to be accommodated within a beta-d-glucuronidase active site pocket. Herein, we show through crystallographic analysis of protein-inhibitor complexes that siastatin B generates both a hemiaminal and a 3-geminal diol iminosugar (3-GDI) that are, rather than the parent compound, directly responsible for enzyme inhibition. The hemiaminal product is the first observation of a natural product that belongs to the noeuromycin class of inhibitors. Additionally, the 3-GDI represents a new and potent class of the iminosugar glycosidase inhibitor. To substantiate our findings, we synthesized both the gluco- and galacto-configured 3-GDIs and characterized their binding both structurally and kinetically to exo-beta-d-glucuronidases and the anticancer target human heparanase. This revealed submicromolar inhibition of exo-beta-d-glucuronidases and an unprecedented binding mode by this new class of inhibitor. Our results reveal the mechanism by which siastatin B acts as a broad-spectrum glycosidase inhibitor, identify a new class of glycosidase inhibitor, and suggest new functionalities that can be incorporated into future generations of glycosidase inhibitors.

Molecular Basis for Inhibition of Heparanases and beta-Glucuronidases by Siastatin B.,Chen Y, van den Nieuwendijk AMCH, Wu L, Moran E, Skoulikopoulou F, van Riet V, Overkleeft HS, Davies GJ, Armstrong Z J Am Chem Soc. 2023 Dec 20. doi: 10.1021/jacs.3c04162. PMID:38118176[13]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Okada Y, Yamada S, Toyoshima M, Dong J, Nakajima M, Sugahara K. Structural recognition by recombinant human heparanase that plays critical roles in tumor metastasis. Hierarchical sulfate groups with different effects and the essential target disulfated trisaccharide sequence. J Biol Chem. 2002 Nov 8;277(45):42488-95. Epub 2002 Sep 3. PMID:12213822 doi:http://dx.doi.org/10.1074/jbc.M206510200
  2. Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, Nadav L, Katz BZ, Geiger B, Vlodavsky I. Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J. 2003 Jun;17(9):1015-25. PMID:12773484 doi:http://dx.doi.org/10.1096/fj.02-0773com
  3. Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N. Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem. 2004 May 28;279(22):23536-41. Epub 2004 Mar 24. PMID:15044433 doi:http://dx.doi.org/10.1074/jbc.M400554200
  4. Zetser A, Bashenko Y, Edovitsky E, Levy-Adam F, Vlodavsky I, Ilan N. Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res. 2006 Feb 1;66(3):1455-63. PMID:16452201 doi:http://dx.doi.org/10.1158/0008-5472.CAN-05-1811
  5. Malgouries S, Donovan M, Thibaut S, Bernard BA. Heparanase 1: a key participant of inner root sheath differentiation program and hair follicle homeostasis. Exp Dermatol. 2008 Dec;17(12):1017-23. doi: 10.1111/j.1600-0625.2008.00739.x., Epub 2008 Jun 14. PMID:18557927 doi:http://dx.doi.org/10.1111/j.1600-0625.2008.00739.x
  6. Cohen-Kaplan V, Naroditsky I, Zetser A, Ilan N, Vlodavsky I, Doweck I. Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer. 2008 Dec 1;123(11):2566-73. doi: 10.1002/ijc.23898. PMID:18798279 doi:http://dx.doi.org/10.1002/ijc.23898
  7. Fux L, Feibish N, Cohen-Kaplan V, Gingis-Velitski S, Feld S, Geffen C, Vlodavsky I, Ilan N. Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Res. 2009 Mar 1;69(5):1758-67. doi: 10.1158/0008-5472.CAN-08-1837. Epub, 2009 Feb 24. PMID:19244131 doi:http://dx.doi.org/10.1158/0008-5472.CAN-08-1837
  8. Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC, Sanderson RD. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood. 2010 Mar 25;115(12):2449-57. doi: 10.1182/blood-2009-07-234757. Epub 2010 , Jan 22. PMID:20097882 doi:http://dx.doi.org/10.1182/blood-2009-07-234757
  9. Peterson SB, Liu J. Unraveling the specificity of heparanase utilizing synthetic substrates. J Biol Chem. 2010 May 7;285(19):14504-13. doi: 10.1074/jbc.M110.104166. Epub 2010, Feb 24. PMID:20181948 doi:http://dx.doi.org/10.1074/jbc.M110.104166
  10. Smith PN, Freeman C, Yu D, Chen M, Gatenby PA, Parish CR, Li RW. Heparanase in primary human osteoblasts. J Orthop Res. 2010 Oct;28(10):1315-22. doi: 10.1002/jor.21138. PMID:20309870 doi:http://dx.doi.org/10.1002/jor.21138
  11. Poon IK, Yee DY, Jones AL, Wood RJ, Davis DS, Freeman C, Parish CR, Hulett MD. Histidine-rich glycoprotein binds heparanase and regulates its enzymatic activity and cell surface interactions. Int J Biochem Cell Biol. 2010 Sep;42(9):1507-16. doi:, 10.1016/j.biocel.2010.05.008. Epub 2010 May 31. PMID:20561914 doi:http://dx.doi.org/10.1016/j.biocel.2010.05.008
  12. Ramani VC, Yang Y, Ren Y, Nan L, Sanderson RD. Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem. 2011 Feb 25;286(8):6490-9. doi: 10.1074/jbc.M110.183277. Epub 2010, Dec 3. PMID:21131364 doi:http://dx.doi.org/10.1074/jbc.M110.183277
  13. Chen Y, van den Nieuwendijk AMCH, Wu L, Moran E, Skoulikopoulou F, van Riet V, Overkleeft HS, Davies GJ, Armstrong Z. Molecular Basis for Inhibition of Heparanases and β-Glucuronidases by Siastatin B. J Am Chem Soc. 2023 Dec 20. PMID:38118176 doi:10.1021/jacs.3c04162

8ohr, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA