2ojr
Structure of ubiquitin solved by SAD using the Lanthanide-Binding TagStructure of ubiquitin solved by SAD using the Lanthanide-Binding Tag
Structural highlights
FunctionUBC_HUMAN Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedA double-lanthanide-binding tag (dLBT), a small peptide sequence engineered to bind two lanthanide ions (e.g., Tb3+) with high affinity, was used to solve the phase problem for the structure determination of ubiquitin by the single-wavelength anomalous diffraction (SAD) method. Since the dLBT is comprised exclusively of encoded amino acids, the necessity for the incorporation of unnatural amino acids or chemical modification of the protein as a prerequisite for X-ray structure determination is eliminated. A construct encoding the dLBT as an N-terminal fusion with ubiquitin provides for facile expression and purification using standard methods. Phasing of the single-wavelength X-ray data (at 2.6 A resolution) using only the anomalous signal from the two tightly bound Tb3+ ions in the dLBT led to clear electron-density maps. Nearly 75% of the ubiquitin structure was built using automated model-building software without user intervention. It is anticipated that this technique will be broadly applicable, complementing existing macromolecular phasing methodologies. The dLBT should be particularly useful in cases where protein derivatization with heavy atoms proves to be problematic or synchrotron facilities are unavailable. Double-lanthanide-binding tags for macromolecular crystallographic structure determination.,Silvaggi NR, Martin LJ, Schwalbe H, Imperiali B, Allen KN J Am Chem Soc. 2007 Jun 6;129(22):7114-20. Epub 2007 May 12. PMID:17497863[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|