4u4z

Revision as of 15:26, 20 December 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Crystal structure of Phyllanthoside bound to the yeast 80S ribosomeCrystal structure of Phyllanthoside bound to the yeast 80S ribosome

Structural highlights

4u4z is a 20 chain structure with sequence from Saccharomyces cerevisiae S288C. This structure supersedes the now removed PDB entries 4ulj, 4ulk, 4ulm, 4uln and 4ulo. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.1Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

STM1_YEAST Binds specifically G4 quadruplex (these are four-stranded right-handed helices, stabilized by guanine base quartets) and purine motif triplex (characterized by a third, antiparallel purine-rich DNA strand located within the major groove of a homopurine stretch of duplex DNA) nucleic acid structures. These structures may be present at telomeres or in rRNAs. Acts with CDC13 to control telomere length homeostasis. Involved in the control of the apoptosis-like cell death.[1]

Publication Abstract from PubMed

The ribosome is a molecular machine responsible for protein synthesis and a major target for small-molecule inhibitors. Compared to the wealth of structural information available on ribosome-targeting antibiotics in bacteria, our understanding of the binding mode of ribosome inhibitors in eukaryotes is currently limited. Here we used X-ray crystallography to determine 16 high-resolution structures of 80S ribosomes from Saccharomyces cerevisiae in complexes with 12 eukaryote-specific and 4 broad-spectrum inhibitors. All inhibitors were found associated with messenger RNA and transfer RNA binding sites. In combination with kinetic experiments, the structures suggest a model for the action of cycloheximide and lactimidomycin, which explains why lactimidomycin, the larger compound, specifically targets the first elongation cycle. The study defines common principles of targeting and resistance, provides insights into translation inhibitor mode of action and reveals the structural determinants responsible for species selectivity which could guide future drug development.

Structural basis for the inhibition of the eukaryotic ribosome.,Garreau de Loubresse N, Prokhorova I, Holtkamp W, Rodnina MV, Yusupova G, Yusupov M Nature. 2014 Sep 25;513(7519):517-22. doi: 10.1038/nature13737. Epub 2014 Sep 10. PMID:25209664[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Van Dyke MW, Nelson LD, Weilbaecher RG, Mehta DV. Stm1p, a G4 quadruplex and purine motif triplex nucleic acid-binding protein, interacts with ribosomes and subtelomeric Y' DNA in Saccharomyces cerevisiae. J Biol Chem. 2004 Jun 4;279(23):24323-33. Epub 2004 Mar 23. PMID:15044472 doi:http://dx.doi.org/10.1074/jbc.M401981200
  2. Garreau de Loubresse N, Prokhorova I, Holtkamp W, Rodnina MV, Yusupova G, Yusupov M. Structural basis for the inhibition of the eukaryotic ribosome. Nature. 2014 Sep 25;513(7519):517-22. doi: 10.1038/nature13737. Epub 2014 Sep 10. PMID:25209664 doi:http://dx.doi.org/10.1038/nature13737

4u4z, resolution 3.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA