4c9x

Revision as of 15:06, 20 December 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Crystal structure of NUDT1 (MTH1) with S-crizotinibCrystal structure of NUDT1 (MTH1) with S-crizotinib

Structural highlights

4c9x is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.2Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

8ODP_HUMAN Antimutagenic. Acts as a sanitizing enzyme for oxidized nucleotide pools, thus suppressing cell dysfunction and death induced by oxidative stress. Hydrolyzes 8-oxo-dGTP, 8-oxo-dATP and 2-OH-dATP, thus preventing misincorporation of oxidized purine nucleoside triphosphates into DNA and subsequently preventing A:T to C:G and G:C to T:A transversions. Able to hydrolyze also the corresponding ribonucleotides, 2-OH-ATP, 8-oxo-GTP and 8-oxo-ATP.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

Activated RAS GTPase signalling is a critical driver of oncogenic transformation and malignant disease. Cellular models of RAS-dependent cancers have been used to identify experimental small molecules, such as SCH51344, but their molecular mechanism of action remains generally unknown. Here, using a chemical proteomic approach, we identify the target of SCH51344 as the human mutT homologue MTH1 (also known as NUDT1), a nucleotide pool sanitizing enzyme. Loss-of-function of MTH1 impaired growth of KRAS tumour cells, whereas MTH1 overexpression mitigated sensitivity towards SCH51344. Searching for more drug-like inhibitors, we identified the kinase inhibitor crizotinib as a nanomolar suppressor of MTH1 activity. Surprisingly, the clinically used (R)-enantiomer of the drug was inactive, whereas the (S)-enantiomer selectively inhibited MTH1 catalytic activity. Enzymatic assays, chemical proteomic profiling, kinome-wide activity surveys and MTH1 co-crystal structures of both enantiomers provide a rationale for this remarkable stereospecificity. Disruption of nucleotide pool homeostasis via MTH1 inhibition by (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models. Our results propose (S)-crizotinib as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 in general as a promising novel class of anticancer agents.

Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy.,Huber KV, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth AS, Gokturk C, Sanjiv K, Stromberg K, Pham T, Berglund UW, Colinge J, Bennett KL, Loizou JI, Helleday T, Knapp S, Superti-Furga G Nature. 2014 Apr 10;508(7495):222-7. doi: 10.1038/nature13194. Epub 2014 Apr 2. PMID:24695225[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Fujikawa K, Kamiya H, Yakushiji H, Fujii Y, Nakabeppu Y, Kasai H. The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J Biol Chem. 1999 Jun 25;274(26):18201-5. PMID:10373420
  2. Fujii Y, Shimokawa H, Sekiguchi M, Nakabeppu Y. Functional significance of the conserved residues for the 23-residue module among MTH1 and MutT family proteins. J Biol Chem. 1999 Dec 31;274(53):38251-9. PMID:10608900
  3. Fujikawa K, Kamiya H, Yakushiji H, Nakabeppu Y, Kasai H. Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res. 2001 Jan 15;29(2):449-54. PMID:11139615
  4. Yoshimura D, Sakumi K, Ohno M, Sakai Y, Furuichi M, Iwai S, Nakabeppu Y. An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J Biol Chem. 2003 Sep 26;278(39):37965-73. Epub 2003 Jul 10. PMID:12857738 doi:10.1074/jbc.M306201200
  5. Takagi Y, Setoyama D, Ito R, Kamiya H, Yamagata Y, Sekiguchi M. Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates: comparison with MTH1 and MTH2. J Biol Chem. 2012 Jun 15;287(25):21541-9. doi: 10.1074/jbc.M112.363010. Epub 2012, May 3. PMID:22556419 doi:10.1074/jbc.M112.363010
  6. Huber KV, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth AS, Gokturk C, Sanjiv K, Stromberg K, Pham T, Berglund UW, Colinge J, Bennett KL, Loizou JI, Helleday T, Knapp S, Superti-Furga G. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature. 2014 Apr 10;508(7495):222-7. doi: 10.1038/nature13194. Epub 2014 Apr 2. PMID:24695225 doi:http://dx.doi.org/10.1038/nature13194

4c9x, resolution 1.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA