2xxl

Revision as of 13:40, 20 December 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Crystal structure of drosophila Grass clip serine protease of Toll pathwayCrystal structure of drosophila Grass clip serine protease of Toll pathway

Structural highlights

2xxl is a 2 chain structure with sequence from Drosophila melanogaster. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GRASS_DROME Endopeptidase (By similarity). Plays a key role in innate immunity by activating the Toll pathway in response to fungal and Gram-positive bacterial infections, presumably downstream of pattern-recognition receptors (PRR), such as PGRP-SA, GNBP1 and GNBP3, and upstream of spz processing enzyme SPE (PubMed:16631589, PubMed:18724373).[UniProtKB:Q9XXV0][1] [2]

Publication Abstract from PubMed

Grass is a clip domain serine protease (SP) involved in a proteolytic cascade triggering the Toll pathway activation of Drosophila during an immune response. Epistasic studies position it downstream of the apical protease ModSP and upstream of the terminal protease Spaetzle-processing enzyme. Here, we report the crystal structure of Grass zymogen. We found that Grass displays a rather deep active site cleft comparable with that of proteases of coagulation and complement cascades. A key distinctive feature is the presence of an additional loop (75-loop) in the proximity of the activation site localized on a protruding loop. All biochemical attempts to hydrolyze the activation site of Grass failed, strongly suggesting restricted access to this region. The 75-loop is thus proposed to constitute an original mechanism to prevent spontaneous activation. A comparison of Grass with clip serine proteases of known function involved in analogous proteolytic cascades allowed us to define two groups, according to the presence of the 75-loop and the conformation of the clip domain. One group (devoid of the 75-loop) contains penultimate proteases whereas the other contains terminal proteases. Using this classification, Grass appears to be a terminal protease. This result is evaluated according to the genetic data documenting Grass function.

Structure-function analysis of grass clip serine protease involved in Drosophila Toll pathway activation.,Kellenberger C, Leone P, Coquet L, Jouenne T, Reichhart JM, Roussel A J Biol Chem. 2011 Apr 8;286(14):12300-7. Epub 2011 Feb 10. PMID:21310954[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Kambris Z, Brun S, Jang IH, Nam HJ, Romeo Y, Takahashi K, Lee WJ, Ueda R, Lemaitre B. Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr Biol. 2006 Apr 18;16(8):808-13. PMID:16631589 doi:10.1016/j.cub.2006.03.020
  2. El Chamy L, Leclerc V, Caldelari I, Reichhart JM. Sensing of 'danger signals' and pathogen-associated molecular patterns defines binary signaling pathways 'upstream' of Toll. Nat Immunol. 2008 Oct;9(10):1165-70. PMID:18724373 doi:10.1038/ni.1643
  3. Kellenberger C, Leone P, Coquet L, Jouenne T, Reichhart JM, Roussel A. Structure-function analysis of grass clip serine protease involved in Drosophila Toll pathway activation. J Biol Chem. 2011 Apr 8;286(14):12300-7. Epub 2011 Feb 10. PMID:21310954 doi:10.1074/jbc.M110.182741

2xxl, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA