2vr4

Revision as of 18:29, 13 December 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Transition-state mimicry in mannoside hydrolysis: characterisation of twenty six inhibitors and insight into binding from linear free energy relationships and 3-D structureTransition-state mimicry in mannoside hydrolysis: characterisation of twenty six inhibitors and insight into binding from linear free energy relationships and 3-D structure

Structural highlights

2vr4 is a 2 chain structure with sequence from Bacteroides thetaiotaomicron VPI-5482. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q8AAK6_BACTN

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Enzyme inhibition through mimicry of the transition state is a major area for the design of new therapeutic agents. Emerging evidence suggests that many retaining glycosidases that are active on alpha- or beta-mannosides harness unusual B2,5 (boat) transition states. Here we present the analysis of 25 putative beta-mannosidase inhibitors, whose Ki values range from nanomolar to millimolar, on the Bacteroides thetaiotaomicron beta-mannosidase BtMan2A. B2,5 or closely related conformations were observed for all tightly binding compounds. Subsequent linear free energy relationships that correlate log Ki with log Km/kcat for a series of active center variants highlight aryl-substituted mannoimidazoles as powerful transition state mimics in which the binding energy of the aryl group enhances both binding and the degree of transition state mimicry. Support for a B2,5 transition state during enzymatic beta-mannosidase hydrolysis should also facilitate the design and exploitation of transition state mimics for the inhibition of retaining alpha-mannosidases--an area that is emerging for anticancer therapeutics.

Structural and biochemical evidence for a boat-like transition state in beta-mannosidases.,Tailford LE, Offen WA, Smith NL, Dumon C, Morland C, Gratien J, Heck MP, Stick RV, Bleriot Y, Vasella A, Gilbert HJ, Davies GJ Nat Chem Biol. 2008 May;4(5):306-12. PMID:18408714[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tailford LE, Offen WA, Smith NL, Dumon C, Morland C, Gratien J, Heck MP, Stick RV, Bleriot Y, Vasella A, Gilbert HJ, Davies GJ. Structural and biochemical evidence for a boat-like transition state in beta-mannosidases. Nat Chem Biol. 2008 May;4(5):306-12. PMID:18408714 doi:10.1038/nchembio.81

2vr4, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA