7v6q

Revision as of 20:21, 29 November 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Crystal structure of sNASP-ASF1A-H3.1-H4 complexCrystal structure of sNASP-ASF1A-H3.1-H4 complex

Structural highlights

7v6q is a 8 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ASF1A_HUMAN Histone chaperone that facilitates histone deposition and histone exchange and removal during nucleosome assembly and disassembly. Cooperates with chromatin assembly factor 1 (CAF-1) to promote replication-dependent chromatin assembly and with HIRA to promote replication-independent chromatin assembly. Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit.[1] [2] [3] [4] [5] [6] [7]

Publication Abstract from PubMed

Chromosomal duplication requires de novo assembly of nucleosomes from newly synthesized histones, and the process involves a dynamic network of interactions between histones and histone chaperones. sNASP and ASF1 are two major histone H3-H4 chaperones found in distinct and common complexes, yet how sNASP binds H3-H4 in the presence and absence of ASF1 remains unclear. Here we show that, in the presence of ASF1, sNASP principally recognizes a partially unfolded Nalpha region of histone H3, and in the absence of ASF1, an additional sNASP binding site becomes available in the core domain of the H3-H4 complex. Our study also implicates a critical role of the C-terminal tail of H4 in the transfer of H3-H4 between sNASP and ASF1 and the coiled-coil domain of sNASP in nucleosome assembly. These findings provide mechanistic insights into coordinated histone binding and transfer by histone chaperones.

Distinct histone H3-H4 binding modes of sNASP reveal the basis for cooperation and competition of histone chaperones.,Liu CP, Jin W, Hu J, Wang M, Chen J, Li G, Xu RM Genes Dev. 2021 Dec 1;35(23-24):1610-1624. doi: 10.1101/gad.349100.121. Epub 2021, Nov 24. PMID:34819355[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Munakata T, Adachi N, Yokoyama N, Kuzuhara T, Horikoshi M. A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells. 2000 Mar;5(3):221-33. PMID:10759893
  2. Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep. 2002 Apr;3(4):329-34. Epub 2002 Mar 15. PMID:11897662 doi:10.1093/embo-reports/kvf068
  3. Umehara T, Horikoshi M. Transcription initiation factor IID-interactive histone chaperone CIA-II implicated in mammalian spermatogenesis. J Biol Chem. 2003 Sep 12;278(37):35660-7. Epub 2003 Jul 2. PMID:12842904 doi:10.1074/jbc.M303549200
  4. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004 Jan 9;116(1):51-61. PMID:14718166
  5. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell. 2005 Jan;8(1):19-30. PMID:15621527 doi:S1534580704004083
  6. Tamburini BA, Carson JJ, Adkins MW, Tyler JK. Functional conservation and specialization among eukaryotic anti-silencing function 1 histone chaperones. Eukaryot Cell. 2005 Sep;4(9):1583-90. PMID:16151251 doi:10.1128/EC.4.9.1583-1590.2005
  7. Groth A, Ray-Gallet D, Quivy JP, Lukas J, Bartek J, Almouzni G. Human Asf1 regulates the flow of S phase histones during replicational stress. Mol Cell. 2005 Jan 21;17(2):301-11. PMID:15664198 doi:S1097276504008020
  8. Liu CP, Jin W, Hu J, Wang M, Chen J, Li G, Xu RM. Distinct histone H3-H4 binding modes of sNASP reveal the basis for cooperation and competition of histone chaperones. Genes Dev. 2021 Dec 1;35(23-24):1610-1624. PMID:34819355 doi:10.1101/gad.349100.121

7v6q, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA