5zx2

From Proteopedia
Revision as of 12:09, 22 November 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Mycobacterium tuberculosis RNA polymerase transcription initiation complex with ECF sigma factor sigma H and 7nt RNAMycobacterium tuberculosis RNA polymerase transcription initiation complex with ECF sigma factor sigma H and 7nt RNA

Structural highlights

5zx2 is a 9 chain structure with sequence from Mycobacterium tuberculosis H37Rv and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RPOA_MYCTU DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_00059][1]

Publication Abstract from PubMed

Bacterial RNA polymerase employs extra-cytoplasmic function (ECF) sigma factors to regulate context-specific gene expression programs. Despite being the most abundant and divergent sigma factor class, the structural basis of ECF sigma factor-mediated transcription initiation remains unknown. Here, we determine a crystal structure of Mycobacterium tuberculosis (Mtb) RNAP holoenzyme comprising an RNAP core enzyme and the ECF sigma factor sigma(H) (sigma(H)-RNAP) at 2.7 A, and solve another crystal structure of a transcription initiation complex of Mtb sigma(H)-RNAP (sigma(H)-RPo) comprising promoter DNA and an RNA primer at 2.8 A. The two structures together reveal the interactions between sigma(H) and RNAP that are essential for sigma(H)-RNAP holoenzyme assembly as well as the interactions between sigma(H)-RNAP and promoter DNA responsible for stringent promoter recognition and for promoter unwinding. Our study establishes that ECF sigma factors and primary sigma factors employ distinct mechanisms for promoter recognition and for promoter unwinding.

Structural basis for transcription initiation by bacterial ECF sigma factors.,Li L, Fang C, Zhuang N, Wang T, Zhang Y Nat Commun. 2019 Mar 11;10(1):1153. doi: 10.1038/s41467-019-09096-y. PMID:30858373[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hu Y, Morichaud Z, Chen S, Leonetti JP, Brodolin K. Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the sigma A-containing RNA polymerase holoenzyme. Nucleic Acids Res. 2012 Aug;40(14):6547-57. doi: 10.1093/nar/gks346. Epub 2012, May 8. PMID:22570422 doi:http://dx.doi.org/10.1093/nar/gks346
  2. Li L, Fang C, Zhuang N, Wang T, Zhang Y. Structural basis for transcription initiation by bacterial ECF sigma factors. Nat Commun. 2019 Mar 11;10(1):1153. doi: 10.1038/s41467-019-09096-y. PMID:30858373 doi:http://dx.doi.org/10.1038/s41467-019-09096-y

5zx2, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA