3e3b
Crystal structure of catalytic subunit of human protein kinase CK2alpha prime with a potent indazole-derivative inhibitorCrystal structure of catalytic subunit of human protein kinase CK2alpha prime with a potent indazole-derivative inhibitor
Structural highlights
FunctionCSK22_HUMAN Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage. Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation. Can also negatively regulate apoptosis. Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3. Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8. Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV. Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB. Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function. Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1. Acts as an ectokinase that phosphorylates several extracellular proteins. During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV.[1] [2] [3] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCasein kinase 2 (CK2) is a serine/threonine kinase that functions as a heterotetramer composed of two catalytic subunits (CK2alpha1 or CK2alpha2) and two regulatory subunits (CK2beta). The two isozymes CK2alpha1 and CK2alpha2 play distinguishable roles in healthy subjects and in patients with diseases such as cancer, respectively. In order to develop novel CK2alpha1-selective inhibitors, the crystal structure of human CK2alpha2 (hCK2alpha2) complexed with a potent CK2alpha inhibitor which binds to the active site of hCK2alpha2 was determined and compared with that of human CK2alpha1. While the two isozymes exhibited a high similarity with regard to the active site, the largest structural difference between the isoforms occurred in the beta4-beta5 loop responsible for the CK2alpha-CK2beta interface. The top of the N-terminal segment interacted with the beta4-beta5 loop via a hydrogen bond in hCK2alpha2 but not in hCK2alpha1. Thus, the CK2alpha-CK2beta interface is a likely target candidate for the production of selective CK2alpha1 inhibitors. Structure of human protein kinase CK2 alpha 2 with a potent indazole-derivative inhibitor.,Nakaniwa T, Kinoshita T, Sekiguchi Y, Tada T, Nakanishi I, Kitaura K, Suzuki Y, Ohno H, Hirasawa A, Tsujimoto G Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Feb 1;65(Pt, 2):75-9. Epub 2009 Jan 31. PMID:19193990[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|