2hh9

Revision as of 11:51, 25 October 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Thiamin pyrophosphokinase from Candida albicansThiamin pyrophosphokinase from Candida albicans

Structural highlights

2hh9 is a 2 chain structure with sequence from Candida albicans. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: In search of new antifungal targets of potential interest for pharmaceutical companies, we initiated a comparative genomics study to identify the most promising protein-coding genes in fungal genomes. One criterion was the protein sequence conservation between reference pathogenic genomes. A second criterion was that the corresponding gene in Saccharomyces cerevisiae should be essential. Since thiamine pyrophosphate is an essential product involved in a variety of metabolic pathways, proteins responsible for its production satisfied these two criteria. RESULTS: We report the enzymatic characterization and the crystallographic structure of the Candida albicans Thiamine pyrophosphokinase. The protein was co-crystallized with thiamine or thiamine-PNP. CONCLUSION: The presence of an inorganic phosphate in the crystallographic structure opposite the known AMP binding site relative to the thiamine moiety suggests that a second AMP molecule could be accommodated in the C. albicans structure. Together with the crystallographic structures of the enzyme/substrate complexes this suggests the existence of a secondary, less specific, nucleotide binding site in the Candida albicans thiamine pyrophosphokinase which could transiently serve during the release or the binding of ATP. The structures also highlight a conserved Glutamine residue (Q138) which could interact with the ATP alpha-phosphate and act as gatekeeper. Finally, the TPK/Thiamine-PNP complex is consistent with a one step mechanism of pyrophosphorylation.

Structural characterization of CA1462, the Candida albicans thiamine pyrophosphokinase.,Santini S, Monchois V, Mouz N, Sigoillot C, Rousselle T, Claverie JM, Abergel C BMC Struct Biol. 2008 Jul 24;8:33. PMID:18652651[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Santini S, Monchois V, Mouz N, Sigoillot C, Rousselle T, Claverie JM, Abergel C. Structural characterization of CA1462, the Candida albicans thiamine pyrophosphokinase. BMC Struct Biol. 2008 Jul 24;8:33. PMID:18652651 doi:http://dx.doi.org/10.1186/1472-6807-8-33

2hh9, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA