1nh9

From Proteopedia
Revision as of 10:20, 25 October 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal Structure of a DNA Binding Protein Mja10b from the hyperthermophile Methanococcus jannaschiiCrystal Structure of a DNA Binding Protein Mja10b from the hyperthermophile Methanococcus jannaschii

Structural highlights

1nh9 is a 1 chain structure with sequence from Methanocaldococcus jannaschii. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ALBA_METJA Binds double-stranded DNA tightly but without sequence specificity. It is distributed uniformly and abundantly on the chromosome, suggesting a role in chromatin architecture. However, it does not significantly compact DNA. Binds rRNA and mRNA in vivo. May play a role in maintaining the structural and functional stability of RNA, and, perhaps, ribosomes (By similarity).

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The Sac10b family consists of a group of highly conserved DNA binding proteins from both the euryarchaeotal and the crenarchaeotal branches of Archaea. The proteins have been suggested to play an architectural role in the chromosomal organization in these organisms. Previous studies have mainly focused on the Sac10b proteins from the crenarchaeota. Here, we report the 2.0 A resolution crystal structure of Mja10b from the euryarchaeon Methanococcus jannaschii. The model of Mja10b has been refined to an R-factor of 20.9%. The crystal structure of an Mja10b monomer reveals an alpha/beta structure of four beta-strands and two alpha-helices, and Mja10b assembles into a dimer via an extensive hydrophobic interface. Mja10b has a similar topology to that of its crenarchaeota counterpart Sso10b (also known as Alba). Structural comparison between the two proteins suggests that structural features such as hydrophobic inner core, acetylation sites, dimer interface, and DNA binding surface are conserved among Sac10b proteins. Structural differences between the two proteins were found in the loops. To understand the structural basis for the thermostability of Mja10b, the Mja10b structure was compared to other proteins with similar topology. Our data suggest that extensive ion-pair networks, optimized accessible surface area and the dimerization via hydrophobic interactions may contribute to the enhanced thermostability of Mja10b.

Crystal structure of a DNA binding protein from the hyperthermophilic euryarchaeon Methanococcus jannaschii.,Wang G, Guo R, Bartlam M, Yang H, Xue H, Liu Y, Huang L, Rao Z Protein Sci. 2003 Dec;12(12):2815-22. PMID:14627741[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Wang G, Guo R, Bartlam M, Yang H, Xue H, Liu Y, Huang L, Rao Z. Crystal structure of a DNA binding protein from the hyperthermophilic euryarchaeon Methanococcus jannaschii. Protein Sci. 2003 Dec;12(12):2815-22. PMID:14627741

1nh9, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA