6w4c

From Proteopedia
Revision as of 17:16, 18 October 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal structure of HAO1 in complex with indazole acid inhibitor - compound 5Crystal structure of HAO1 in complex with indazole acid inhibitor - compound 5

Structural highlights

6w4c is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.75Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HAOX1_HUMAN Has 2-hydroxyacid oxidase activity. Most active on the 2-carbon substrate glycolate, but is also active on 2-hydroxy fatty acids, with high activity towards 2-hydroxy palmitate and 2-hydroxy octanoate.

Publication Abstract from PubMed

Inhibition of hydroxy acid oxidase 1 (HAO1) is a strategy to mitigate the accumulation of toxic oxalate that results from reduced activity of alanine-glyoxylate aminotransferase (AGXT) in primary hyperoxaluria 1 (PH1) patients. DNA-Encoded Chemical Library (DECL) screening provided two novel chemical series of potent HAO1 inhibitors, represented by compounds 3-6. Compound 5 was further optimized via various structure-activity relationship (SAR) exploration methods to 29, a compound with improved potency and absorption, distribution, metabolism, and excretion (ADME)/pharmacokinetic (PK) properties. Since carboxylic acid-containing compounds are often poorly permeable and have potential active glucuronide metabolites, we undertook a brief, initial exploration of acid replacements with the aim of identifying non-acid-containing HAO1 inhibitors. Structure-based drug design initiated with Compound 5 led to the identification of a nonacid inhibitor of HAO1, 31, which has weaker potency and increased permeability.

Discovery of Novel, Potent Inhibitors of Hydroxy Acid Oxidase 1 (HAO1) Using DNA-Encoded Chemical Library Screening.,Lee ECY, McRiner AJ, Georgiadis KE, Liu J, Wang Z, Ferguson AD, Levin B, von Rechenberg M, Hupp CD, Monteiro MI, Keefe AD, Olszewski A, Eyermann CJ, Centrella P, Liu Y, Arora S, Cuozzo JW, Zhang Y, Clark MA, Huguet C, Kohlmann A J Med Chem. 2021 May 6. doi: 10.1021/acs.jmedchem.0c02271. PMID:33955740[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lee ECY, McRiner AJ, Georgiadis KE, Liu J, Wang Z, Ferguson AD, Levin B, von Rechenberg M, Hupp CD, Monteiro MI, Keefe AD, Olszewski A, Eyermann CJ, Centrella P, Liu Y, Arora S, Cuozzo JW, Zhang Y, Clark MA, Huguet C, Kohlmann A. Discovery of Novel, Potent Inhibitors of Hydroxy Acid Oxidase 1 (HAO1) Using DNA-Encoded Chemical Library Screening. J Med Chem. 2021 May 6. doi: 10.1021/acs.jmedchem.0c02271. PMID:33955740 doi:http://dx.doi.org/10.1021/acs.jmedchem.0c02271

6w4c, resolution 1.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA