6v3r

From Proteopedia
Revision as of 11:03, 11 October 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal structure of murine cycloxygenase in complex with a harmaline analog, 4,9-dihydro-3H-pyrido[3,4-b]indoleCrystal structure of murine cycloxygenase in complex with a harmaline analog, 4,9-dihydro-3H-pyrido[3,4-b]indole

Structural highlights

6v3r is a 4 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.66Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PGH2_MOUSE Mediates the formation of prostaglandins from arachidonate. May have a role as a major mediator of inflammation and/or a role for prostanoid signaling in activity-dependent plasticity.[1] [2] [3] [4]

Publication Abstract from PubMed

We report the design, synthesis, and evaluation of a series of harmaline analogs as selective inhibitors of 2-arachidonylglycerol (2-AG) oxygenation over arachidonic acid (AA) oxygenation by purified cyclooxygenase-2 (COX-2). A fused tricyclic harmaline analog containing a CH3O substituent at C-6 and a CH3 group at the C-1 position of 4,9-dihydro-3H-pyrido[3,4-b]indole (compound 3) was the best substrate-selective COX-2 inhibitor of those evaluated, exhibiting a 2AG-selective COX-2 inhibitory IC50 of 0.022 muM as compared to >1 muM for AA. The 2.66 A resolution crystal complex of COX-2 with compound 3 revealed that this series of tricyclic indoles binds in the cyclooxygenase channel by flipping the side chain of L531 toward the dimer interface. This novel tricyclic indole series provides the foundation for the development of promising substrate-selective molecules capable of increasing endocannabinoid (EC) levels in the brain to offer new treatments for a variety of diseases, from pain and inflammation to stress and anxiety disorders.

Harmaline Analogs as Substrate-Selective Cyclooxygenase-2 Inhibitors.,Uddin MJ, Xu S, Crews BC, Aleem AM, Ghebreselasie K, Banerjee S, Marnett LJ ACS Med Chem Lett. 2020 Feb 14;11(10):1881-1885. doi:, 10.1021/acsmedchemlett.9b00555. eCollection 2020 Oct 8. PMID:33062168[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Rowlinson SW, Kiefer JR, Prusakiewicz JJ, Pawlitz JL, Kozak KR, Kalgutkar AS, Stallings WC, Kurumbail RG, Marnett LJ. A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385. J Biol Chem. 2003 Nov 14;278(46):45763-9. Epub 2003 Aug 18. PMID:12925531 doi:http://dx.doi.org/10.1074/jbc.M305481200
  2. Vecchio AJ, Simmons DM, Malkowski MG. Structural basis of fatty acid substrate binding to cyclooxygenase-2. J Biol Chem. 2010 Jul 16;285(29):22152-63. Epub 2010 May 12. PMID:20463020 doi:10.1074/jbc.M110.119867
  3. Duggan KC, Walters MJ, Musee J, Harp JM, Kiefer JR, Oates JA, Marnett LJ. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J Biol Chem. 2010 Nov 5;285(45):34950-9. Epub 2010 Sep 1. PMID:20810665 doi:10.1074/jbc.M110.162982
  4. Vecchio AJ, Malkowski MG. The structural basis of endocannabinoid oxygenation by cyclooxygenase-2. J Biol Chem. 2011 Jun 10;286(23):20736-45. Epub 2011 Apr 13. PMID:21489986 doi:10.1074/jbc.M111.230367
  5. Uddin MJ, Xu S, Crews BC, Aleem AM, Ghebreselasie K, Banerjee S, Marnett LJ. Harmaline Analogs as Substrate-Selective Cyclooxygenase-2 Inhibitors. ACS Med Chem Lett. 2020 Feb 14;11(10):1881-1885. doi:, 10.1021/acsmedchemlett.9b00555. eCollection 2020 Oct 8. PMID:33062168 doi:http://dx.doi.org/10.1021/acsmedchemlett.9b00555

6v3r, resolution 2.66Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA