6dyh
Vanadyl-bound structure of the engineered cyt cb562 variant, CH3YVanadyl-bound structure of the engineered cyt cb562 variant, CH3Y
Structural highlights
FunctionC562_ECOLX Electron-transport protein of unknown function. Publication Abstract from PubMedThe bottom-up design and construction of functional metalloproteins remains a formidable task in biomolecular design. Although numerous strategies have been used to create new metalloproteins, pre-existing knowledge of the tertiary and quaternary protein structure is often required to generate suitable platforms for robust metal coordination and activity. Here we report an alternative and easily implemented approach (metal active sites by covalent tethering or MASCoT) in which folded protein building blocks are linked by a single disulfide bond to create diverse metal coordination environments within evolutionarily naive protein-protein interfaces. Metalloproteins generated using this strategy uniformly bind a wide array of first-row transition metal ions (Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and vanadyl) with physiologically relevant thermodynamic affinities (dissociation constants ranging from 700 nM for Mn(II) to 50 fM for Cu(II)). MASCoT readily affords coordinatively unsaturated metal centres-including a penta-His-coordinated non-haem Fe site-and well-defined binding pockets that can accommodate modifications and enable coordination of exogenous ligands such as nitric oxide to the interfacial metal centre. An efficient, step-economical strategy for the design of functional metalloproteins.,Rittle J, Field MJ, Green MT, Tezcan FA Nat Chem. 2019 Feb 18. pii: 10.1038/s41557-019-0218-9. doi:, 10.1038/s41557-019-0218-9. PMID:30778140[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|