4l39

From Proteopedia
Revision as of 19:10, 20 September 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal structure of GH3.12 from Arabidopsis thaliana in complex with AMPCPP and salicylateCrystal structure of GH3.12 from Arabidopsis thaliana in complex with AMPCPP and salicylate

Structural highlights

4l39 is a 2 chain structure with sequence from Arabidopsis thaliana. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.81Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GH312_ARATH Catalyzes the conjugation of specific amino acids (e.g. Glu and possibly His, Lys, and Met) to their preferred acyl substrates (e.g. 4-substituted benzoates), in a magnesium ion- and ATP-dependent manner. Can use 4-substituted benzoates such as 4-aminobenzoate (pABA), 4-fluorobenzoate and 4-hydroxybenzoate (4-HBA), and, to a lesser extent, benzoate, vanillate and trans-cinnamate, but not 2-substituted benzoates and salicylic acid (SA), as conjugating acyl substrates. Involved in both basal and induced resistance in a SA-dependent manner. Confers resistance to virulent and avirulent pathogens (at least bacteria and oomycetes), and promotes SA glucosides accumulation. Required for the establishment of hyper-sensitive response (HR) upon incompatible interaction and subsequent systemic acquired resistance (SAR).[1] [2] [3] [4] [5] [6] [7] [8]

Publication Abstract from PubMed

The combination of protein crystallography and small-angle X-ray scattering (SAXS) provides a powerful method to investigate changes in protein conformation. These complementary structural techniques were used to probe the solution structure of the apo and the ligand-bound forms of the Arabidopsis thaliana acyl acid-amido synthetase GH3.12. This enzyme is part of the extensive GH3 family and plays a critical role in the regulation of plant hormones through the formation of amino-acid-conjugated hormone products via an ATP-dependent reaction mechanism. The enzyme adopts two distinct C-terminal domain orientations with `open' and `closed' active sites. Previous studies suggested that ATP only binds in the open orientation. Here, the X-ray crystal structure of GH3.12 is presented in the closed conformation in complex with the nonhydrolysable ATP analogue AMPCPP and the substrate salicylate. Using on-line HPLC purification combined with SAXS measurements, the most likely apo and ATP-bound protein conformations in solution were determined. These studies demonstrate that the C-terminal domain is flexible in the apo form and favours the closed conformation upon ATP binding. In addition, these data illustrate the efficacy of on-line HPLC purification integrated into the SAXS sample-handling environment to reliably monitor small changes in protein conformation through the collection of aggregate-free and highly redundant data.

Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography.,Round A, Brown E, Marcellin R, Kapp U, Westfall CS, Jez JM, Zubieta C Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2072-80. doi:, 10.1107/S0907444913019276. Epub 2013 Sep 20. PMID:24100325[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Lee MW, Jelenska J, Greenberg JT. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. Plant J. 2008 May;54(3):452-65. doi: 10.1111/j.1365-313X.2008.03439.x. Epub 2008 , Feb 7. PMID:18266921 doi:10.1111/j.1365-313X.2008.03439.x
  2. Warren RF, Merritt PM, Holub E, Innes RW. Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arabidopsis. Genetics. 1999 May;152(1):401-12. PMID:10224270
  3. van der Biezen EA, Freddie CT, Kahn K, Parker JE, Jones JD. Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components. Plant J. 2002 Feb;29(4):439-51. PMID:11846877
  4. McDowell JM, Williams SG, Funderburg NT, Eulgem T, Dangl JL. Genetic analysis of developmentally regulated resistance to downy mildew (Hyaloperonospora parasitica) in Arabidopsis thaliana. Mol Plant Microbe Interact. 2005 Nov;18(11):1226-34. PMID:16353557 doi:10.1094/MPMI-18-1226
  5. Lee MW, Lu H, Jung HW, Greenberg JT. A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2. Mol Plant Microbe Interact. 2007 Oct;20(10):1192-200. PMID:17918621 doi:10.1094/MPMI-20-10-1192
  6. Jagadeeswaran G, Raina S, Acharya BR, Maqbool SB, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Plant J. 2007 Jul;51(2):234-46. Epub 2007 May 23. PMID:17521413 doi:10.1111/j.1365-313X.2007.03130.x
  7. Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, Innes RW. The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol. 2007 Jun;144(2):1144-56. Epub 2007 Apr 27. PMID:17468220 doi:10.1104/pp.107.097691
  8. Okrent RA, Brooks MD, Wildermuth MC. Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. J Biol Chem. 2009 Apr 10;284(15):9742-54. doi: 10.1074/jbc.M806662200. Epub 2009 , Feb 2. PMID:19189963 doi:10.1074/jbc.M806662200
  9. Round A, Brown E, Marcellin R, Kapp U, Westfall CS, Jez JM, Zubieta C. Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2072-80. doi:, 10.1107/S0907444913019276. Epub 2013 Sep 20. PMID:24100325 doi:http://dx.doi.org/10.1107/S0907444913019276

4l39, resolution 2.81Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA