2o7h

From Proteopedia
Revision as of 13:36, 16 August 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal structure of trimeric coiled coil GCN4 leucine zipperCrystal structure of trimeric coiled coil GCN4 leucine zipper

Structural highlights

2o7h is a 6 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.86Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GCN4_YEAST Is a transcription factor that is responsible for the activation of more than 30 genes required for amino acid or for purine biosynthesis in response to amino acid or purine starvation. Binds and recognize the DNA sequence: 5'-TGA[CG]TCA-3'.

Publication Abstract from PubMed

Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

Molecular basis of coiled-coil oligomerization-state specificity.,Ciani B, Bjelic S, Honnappa S, Jawhari H, Jaussi R, Payapilly A, Jowitt T, Steinmetz MO, Kammerer RA Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19850-5. Epub 2010 Nov 2. PMID:21045134[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ciani B, Bjelic S, Honnappa S, Jawhari H, Jaussi R, Payapilly A, Jowitt T, Steinmetz MO, Kammerer RA. Molecular basis of coiled-coil oligomerization-state specificity. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19850-5. Epub 2010 Nov 2. PMID:21045134 doi:10.1073/pnas.1008502107

2o7h, resolution 1.86Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA