5f59

From Proteopedia
Revision as of 11:47, 12 July 2023 by OCA (talk | contribs)
Jump to navigation Jump to search

The crystal structure of MLL3 SET domainThe crystal structure of MLL3 SET domain

Structural highlights

5f59 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.801Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KMT2C_HUMAN Histone methyltransferase. Methylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Central component of the MLL2/3 complex, a coactivator complex of nuclear receptors, involved in transcriptional coactivation. KMT2C/MLL3 may be a catalytic subunit of this complex. May be involved in leukemogenesis and developmental disorder.[1]

Publication Abstract from PubMed

The mixed lineage leukaemia (MLL) family of proteins (including MLL1-MLL4, SET1A and SET1B) specifically methylate histone 3 Lys4, and have pivotal roles in the transcriptional regulation of genes involved in haematopoiesis and development. The methyltransferase activity of MLL1, by itself severely compromised, is stimulated by the three conserved factors WDR5, RBBP5 and ASH2L, which are shared by all MLL family complexes. However, the molecular mechanism of how these factors regulate the activity of MLL proteins still remains poorly understood. Here we show that a minimized human RBBP5-ASH2L heterodimer is the structural unit that interacts with and activates all MLL family histone methyltransferases. Our structural, biochemical and computational analyses reveal a two-step activation mechanism of MLL family proteins. These findings provide unprecedented insights into the common theme and functional plasticity in complex assembly and activity regulation of MLL family methyltransferases, and also suggest a universal regulation mechanism for most histone methyltransferases.

Structural basis for activity regulation of MLL family methyltransferases.,Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, Wu J, Hu C, Wang Y, Shuai J, Chen J, Cao L, Li D, Shi P, Tian C, Zhang J, Dou Y, Li G, Chen Y, Lei M Nature. 2016 Feb 25;530(7591):447-52. doi: 10.1038/nature16952. Epub 2016 Feb 17. PMID:26886794[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Cho YW, Hong T, Hong S, Guo H, Yu H, Kim D, Guszczynski T, Dressler GR, Copeland TD, Kalkum M, Ge K. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J Biol Chem. 2007 Jul 13;282(28):20395-406. Epub 2007 May 11. PMID:17500065 doi:http://dx.doi.org/M701574200
  2. Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, Wu J, Hu C, Wang Y, Shuai J, Chen J, Cao L, Li D, Shi P, Tian C, Zhang J, Dou Y, Li G, Chen Y, Lei M. Structural basis for activity regulation of MLL family methyltransferases. Nature. 2016 Feb 25;530(7591):447-52. doi: 10.1038/nature16952. Epub 2016 Feb 17. PMID:26886794 doi:http://dx.doi.org/10.1038/nature16952

5f59, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA