5en0

Revision as of 11:07, 12 July 2023 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Crystal Structure of T94I rhodopsin mutantCrystal Structure of T94I rhodopsin mutant

Structural highlights

5en0 is a 2 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.81Å
Ligands:, , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

OPSD_BOVIN Photoreceptor required for image-forming vision at low light intensity. Required for photoreceptor cell viability after birth. Light-induced isomerization of 11-cis to all-trans retinal triggers a conformational change leading to G-protein activation and release of all-trans retinal (By similarity).[1] [2]

Publication Abstract from PubMed

Congenital stationary night blindness (CSNB) is an inherited and non-progressive retinal dysfunction. Here, we present the crystal structure of CSNB-causing T94I2.61 rhodopsin in the active conformation at 2.3 A resolution. The introduced hydrophobic side chain prolongs the lifetime of the G protein activating metarhodopsin-II state by establishing a direct van der Waals contact with K2967.43, the site of retinal attachment. This is in stark contrast to the light-activated state of the CSNB-causing G90D2.57 mutation, where the charged mutation forms a salt bridge with K2967.43 To find the common denominator between these two functional modifications, we combined our structural data with a kinetic biochemical analysis and molecular dynamics simulations. Our results indicate that both the charged G90D2.57 and the hydrophobic T94I2.61 mutation alter the dark state by weakening the interaction between the Schiff base (SB) and its counterion E1133.28 We propose that this interference with the tight regulation of the dim light photoreceptor rhodopsin increases background noise in the visual system and causes the loss of night vision characteristic for CSNB patients.

Structural role of the T94I rhodopsin mutation in congenital stationary night blindness.,Singhal A, Guo Y, Matkovic M, Schertler G, Deupi X, Yan EC, Standfuss J EMBO Rep. 2016 Jul 25. pii: e201642671. PMID:27458239[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nakamichi H, Okada T. Local peptide movement in the photoreaction intermediate of rhodopsin. Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12729-34. Epub 2006 Aug 14. PMID:16908857
  2. Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, Harris T, Ballesteros JA, Palczewski K. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16123-8. Epub 2006 Oct 23. PMID:17060607
  3. Singhal A, Guo Y, Matkovic M, Schertler G, Deupi X, Yan EC, Standfuss J. Structural role of the T94I rhodopsin mutation in congenital stationary night blindness. EMBO Rep. 2016 Jul 25. pii: e201642671. PMID:27458239 doi:http://dx.doi.org/10.15252/embr.201642671

5en0, resolution 2.81Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA