Crystal structure of F2F-2020197-00X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2.Crystal structure of F2F-2020197-00X bound to the main protease (3CLpro/Mpro) of SARS-CoV-2.

Structural highlights

8okm is a 2 chain structure with sequence from Severe acute respiratory syndrome coronavirus 2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

R1AB_SARS2 Multifunctional protein involved in the transcription and replication of viral RNAs. Contains the proteinases responsible for the cleavages of the polyprotein.[UniProtKB:P0C6X7] Inhibits host translation by interacting with the 40S ribosomal subunit. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNAs, targeting them for degradation. Viral mRNAs are not susceptible to nsp1-mediated endonucleolytic RNA cleavage thanks to the presence of a 5'-end leader sequence and are therefore protected from degradation. By suppressing host gene expression, nsp1 facilitates efficient viral gene expression in infected cells and evasion from host immune response.[UniProtKB:P0C6X7] May play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses.[UniProtKB:P0C6X7] Responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Participates together with nsp4 in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF3. Prevents also host NF-kappa-B signaling.[UniProtKB:P0C6X7] Participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication.[UniProtKB:P0C6X7] Cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN] (PubMed:32198291). Also able to bind an ADP-ribose-1-phosphate (ADRP).[UniProtKB:P0C6X7][1] Plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] May participate in viral replication by acting as a ssRNA-binding protein.[UniProtKB:P0C6X7] Plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation.[UniProtKB:P0C6X7] Responsible for replication and transcription of the viral RNA genome.[UniProtKB:P0C6X7] Multi-functional protein with a zinc-binding domain in N-terminus displaying RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Activity of helicase is dependent on magnesium.[UniProtKB:P0C6X7] Enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity. Acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens.[UniProtKB:P0C6X7] Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond.[UniProtKB:P0C6X7] Methyltransferase that mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role in viral mRNAs cap methylation which is essential to evade immune system.[UniProtKB:P0C6X7]

Publication Abstract from PubMed

Despite the approval of vaccines, monoclonal antibodies and restrictions during the pandemic, the demand for new efficacious and safe antivirals is compelling to boost the therapeutic arsenal against the COVID-19. The viral 3-chymotrypsin-like protease (3CL(pro)) is an essential enzyme for replication with high homology in the active site across CoVs and variants showing an almost unique specificity for Leu-Gln as P2-P1 residues, allowing the development of broad-spectrum inhibitors. The design, synthesis, biological activity, and cocrystal structural information of newly conceived peptidomimetic covalent reversible inhibitors are herein described. The inhibitors display an aldehyde warhead, a Gln mimetic at P1 and modified P2-P3 residues. Particularly, functionalized proline residues were inserted at P2 to stabilize the beta-turn like bioactive conformation, modulating the affinity. The most potent compounds displayed low/sub-nM potency against the 3CL(pro) of SARS-CoV-2 and MERS-CoV and inhibited viral replication of three human CoVs, i.e. SARS-CoV-2, MERS-CoV, and HCoV 229 in different cell lines. Particularly, derivative 12 exhibited nM-low muM antiviral activity depending on the virus, and the highest selectivity index. Some compounds were co-crystallized with SARS-CoV-2 3CL(pro) validating our design. Altogether, these results foster future work toward broad-spectrum 3CL(pro) inhibitors to challenge CoVs related pandemics.

Broad-spectrum coronavirus 3C-like protease peptidomimetic inhibitors effectively block SARS-CoV-2 replication in cells: Design, synthesis, biological evaluation, and X-ray structure determination.,Stefanelli I, Corona A, Cerchia C, Cassese E, Improta S, Costanzi E, Pelliccia S, Morasso S, Esposito F, Paulis A, Scognamiglio S, Di Leva FS, Storici P, Brindisi M, Tramontano E, Cannalire R, Summa V Eur J Med Chem. 2023 May 5;253:115311. doi: 10.1016/j.ejmech.2023.115311. Epub , 2023 Mar 31. PMID:37043904[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020 Mar 20. pii: science.abb3405. doi: 10.1126/science.abb3405. PMID:32198291 doi:http://dx.doi.org/10.1126/science.abb3405
  2. Stefanelli I, Corona A, Cerchia C, Cassese E, Improta S, Costanzi E, Pelliccia S, Morasso S, Esposito F, Paulis A, Scognamiglio S, Di Leva FS, Storici P, Brindisi M, Tramontano E, Cannalire R, Summa V. Broad-spectrum coronavirus 3C-like protease peptidomimetic inhibitors effectively block SARS-CoV-2 replication in cells: Design, synthesis, biological evaluation, and X-ray structure determination. Eur J Med Chem. 2023 May 5;253:115311. PMID:37043904 doi:10.1016/j.ejmech.2023.115311

8okm, resolution 1.66Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA