2mak
Solution structure of the STIM1 CC1-CC2 homodimer in complex with two Orai1 C-terminal domains.Solution structure of the STIM1 CC1-CC2 homodimer in complex with two Orai1 C-terminal domains.
Structural highlights
DiseaseSTIM1_HUMAN Defects in STIM1 are the cause of immune dysfunction with T-cell inactivation due to calcium entry defect type 2 (IDTICED2) [MIM:612783. IDTICED2 is an immune disorder characterized by recurrent infections, impaired T-cell activation and proliferative response, decreased T-cell production of cytokines, lymphadenopathy, and normal lymphocytes counts and serum immunoglobulin levels. Additional features include thrombocytopenia, autoimmune hemolytic anemia, non-progressive myopathy, partial iris hypoplasia, hepatosplenomegaly and defective enamel dentition.[1] FunctionSTIM1_HUMAN Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release-activated Ca(2+) (CRAC) channel subunit, TMEM142A/ORAI1.[2] [3] [4] [5] [6] [7] [8] [9] [10] Publication Abstract from PubMedOrai1 calcium channels in the plasma membrane are activated by stromal interaction molecule-1 (STIM1), an endoplasmic reticulum calcium sensor, to mediate store-operated calcium entry (SOCE). The cytosolic region of STIM1 contains a long putative coiled-coil (CC)1 segment and shorter CC2 and CC3 domains. Here we present solution nuclear magnetic resonance structures of a trypsin-resistant CC1-CC2 fragment in the apo and Orai1-bound states. Each CC1-CC2 subunit forms a U-shaped structure that homodimerizes through antiparallel interactions between equivalent alpha-helices. The CC2:CC2' helix pair clamps two identical acidic Orai1 C-terminal helices at opposite ends of a hydrophobic/basic STIM-Orai association pocket. STIM1 mutants disrupting CC1:CC1' interactions attenuate, while variants promoting CC1 stability spontaneously activate Orai1 currents. CC2 mutations cause remarkable variability in Orai1 activation because of a dual function in binding Orai1 and autoinhibiting STIM1 oligomerization via interactions with CC3. We conclude that SOCE is activated through dynamic interplay between STIM1 and Orai1 helices. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry.,Stathopulos PB, Schindl R, Fahrner M, Zheng L, Gasmi-Seabrook GM, Muik M, Romanin C, Ikura M Nat Commun. 2013 Dec 19;4:2963. doi: 10.1038/ncomms3963. PMID:24351972[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|