2lqc

From Proteopedia
Revision as of 14:12, 15 February 2023 by OCA (talk | contribs)
Jump to navigation Jump to search

NMR solution structure of a Ca2+-Calmodulin with a binding motif (NSCaTE) peptide from the N-terminal cytoplasmic domain of the L-type Voltage-Cated Calcium Channel alpha1C subunitNMR solution structure of a Ca2+-Calmodulin with a binding motif (NSCaTE) peptide from the N-terminal cytoplasmic domain of the L-type Voltage-Cated Calcium Channel alpha1C subunit

Structural highlights

2lqc is a 2 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CALM1_HUMAN The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14.

Function

CALM1_HUMAN Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).[1] [2] [3] [4]

Publication Abstract from PubMed

It is well-known that the opening of L-type voltage-gated calcium channels can be regulated by calmodulin (CaM). One of the main regulatory mechanisms is calcium-dependent inactivation (CDI), where binding of apo-CaM to the cytoplasmic C-terminal domain of the channel can effectively sense an increase in the local calcium ion concentration. Calcium-bound CaM can bind to the IQ-motif region of the C-terminal region and block the calcium channel, thereby providing a negative feedback mechanism that prevents the rise of cellular calcium concentrations over physiological limits. Recently, an additional Ca(2+)/CaM-binding motif (NSCaTE, N-terminal spatial Ca(2+) transforming element) was identified in the amino terminal cytoplasmic region of Ca(v)1.2 and Ca(v)1.3. This motif exists only in Ca(v)1.2 and Ca(v)1.3 channels, and a pronounced N-lobe (Ca(2+)/CaM) CDI effect was found for Ca(v)1.3. To understand the molecular basis of this interaction, the complexes of Ca(2+)/CaM with the biosynthetically produced N-terminal region (residues 1-68) and NSCaTE peptide (residues 48-68) were investigated. We discovered that the NSCaTE motif in the N-terminal cytoplasmic region adopts an alpha-helical conformation, most likely due to its high alanine content. Additionally, the complex exhibits an unusual 1:2 protein:peptide stoichiometry when bound to Ca(2+)-CaM, and the N-lobe of CaM has a much stronger affinity for the peptide than the C-lobe. The complex structures of the isolated N- and C-lobe of Ca(2+)/CaM and the NSCaTE peptide were determined by nuclear magnetic resonance spectroscopy and data-driven protein-docking methods. Moreover, we also demonstrated that calcium binding protein 1, which competes with CaM for binding to the C-terminal cytoplasmic domain, binds only weakly to the NSCaTE region. The structures provide insights into the possible roles of this motif in the calcium regulatory network. Our study provides structural evidence for the CaM-bridge model proposed in previous studies.

Structural basis for the regulation of L-type voltage-gated calcium channels: interactions between the N-terminal cytoplasmic domain and Ca(2+)-calmodulin.,Liu Z, Vogel HJ Front Mol Neurosci. 2012;5:38. Epub 2012 Apr 12. PMID:22518098[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell. 2006 Aug;17(8):3423-34. Epub 2006 Jun 7. PMID:16760425 doi:10.1091/mbc.E06-04-0371
  2. Reichow SL, Clemens DM, Freites JA, Nemeth-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Allosteric mechanism of water-channel gating by Ca-calmodulin. Nat Struct Mol Biol. 2013 Jul 28. doi: 10.1038/nsmb.2630. PMID:23893133 doi:10.1038/nsmb.2630
  3. Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, Hwang HS, Johnson CN, Chazin WJ, Loporcaro CG, Shah M, Papez AL, Lau YR, Kanter R, Knollmann BC, Ackerman MJ. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G. Circ Cardiovasc Genet. 2016 Apr;9(2):136-146. doi:, 10.1161/CIRCGENETICS.115.001323. Epub 2016 Mar 11. PMID:26969752 doi:http://dx.doi.org/10.1161/CIRCGENETICS.115.001323
  4. Yu CC, Ko JS, Ai T, Tsai WC, Chen Z, Rubart M, Vatta M, Everett TH 4th, George AL Jr, Chen PS. Arrhythmogenic calmodulin mutations impede activation of small-conductance calcium-activated potassium current. Heart Rhythm. 2016 Aug;13(8):1716-23. doi: 10.1016/j.hrthm.2016.05.009. Epub 2016, May 7. PMID:27165696 doi:http://dx.doi.org/10.1016/j.hrthm.2016.05.009
  5. Liu Z, Vogel HJ. Structural basis for the regulation of L-type voltage-gated calcium channels: interactions between the N-terminal cytoplasmic domain and Ca(2+)-calmodulin. Front Mol Neurosci. 2012;5:38. Epub 2012 Apr 12. PMID:22518098 doi:10.3389/fnmol.2012.00038
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA