3uvm

From Proteopedia
Revision as of 11:10, 20 July 2022 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal structure of WDR5 in complex with the WDR5-interacting motif of MLL4Crystal structure of WDR5 in complex with the WDR5-interacting motif of MLL4

Structural highlights

3uvm is a 2 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:WDR5, BIG3 (HUMAN)
Activity:Histone-lysine N-methyltransferase, with EC number 2.1.1.43
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[WDR5_HUMAN] Contributes to histone modification. May position the N-terminus of histone H3 for efficient trimethylation at 'Lys-4'. As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. May regulate osteoblasts differentiation.[1] [2] [3] [4] [5] [KMT2B_HUMAN] Histone methyltransferase. Methylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2. Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development. Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation.[6]

Publication Abstract from PubMed

In mammals, the SET1 family of lysine methyltransferases (KMTs), which includes MLL1-5, SET1A and SET1B, catalyzes the methylation of lysine-4 (Lys-4) on histone H3. Recent reports have demonstrated that a three-subunit complex composed of WD-repeat protein-5 (WDR5), retinoblastoma-binding protein-5 (RbBP5) and absent, small, homeotic disks-2-like (ASH2L) stimulates the methyltransferase activity of MLL1. On the basis of studies showing that this stimulation is in part controlled by an interaction between WDR5 and a small region located in close proximity of the MLL1 catalytic domain [referred to as the WDR5-interacting motif (Win)], it has been suggested that WDR5 might play an analogous role in scaffolding the other SET1 complexes. We herein provide biochemical and structural evidence showing that WDR5 binds the Win motifs of MLL2-4, SET1A and SET1B. Comparative analysis of WDR5-Win complexes reveals that binding of the Win motifs is achieved by the plasticity of WDR5 peptidyl-arginine-binding cleft allowing the C-terminal ends of the Win motifs to be maintained in structurally divergent conformations. Consistently, enzymatic assays reveal that WDR5 plays an important role in the optimal stimulation of MLL2-4, SET1A and SET1B methyltransferase activity by the RbBP5-ASH2L heterodimer. Overall, our findings illustrate the function of WDR5 in scaffolding the SET1 family of KMTs and further emphasize on the important role of WDR5 in regulating global histone H3 Lys-4 methylation.

The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases.,Zhang P, Lee H, Brunzelle JS, Couture JF Nucleic Acids Res. 2012 Jan 20. PMID:22266653[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem. 2009 Sep 4;284(36):24242-56. Epub 2009 Jun 25. PMID:19556245 doi:M109.014498
  2. Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, Wu J, Lill JR, Zha J. The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol. 2009 Mar;29(5):1176-88. doi: 10.1128/MCB.01599-08. Epub 2008 Dec, 22. PMID:19103755 doi:10.1128/MCB.01599-08
  3. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem. 2010 Feb 12;285(7):4268-72. doi: 10.1074/jbc.C109.087981. Epub 2009 , Dec 14. PMID:20018852 doi:10.1074/jbc.C109.087981
  4. Han Z, Guo L, Wang H, Shen Y, Deng XW, Chai J. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol Cell. 2006 Apr 7;22(1):137-44. PMID:16600877 doi:10.1016/j.molcel.2006.03.018
  5. Couture JF, Collazo E, Trievel RC. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol. 2006 Aug;13(8):698-703. Epub 2006 Jul 9. PMID:16829960 doi:10.1038/nsmb1116
  6. Demers C, Chaturvedi CP, Ranish JA, Juban G, Lai P, Morle F, Aebersold R, Dilworth FJ, Groudine M, Brand M. Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Mol Cell. 2007 Aug 17;27(4):573-84. PMID:17707229 doi:http://dx.doi.org/10.1016/j.molcel.2007.06.022
  7. Zhang P, Lee H, Brunzelle JS, Couture JF. The plasticity of WDR5 peptide-binding cleft enables the binding of the SET1 family of histone methyltransferases. Nucleic Acids Res. 2012 Jan 20. PMID:22266653 doi:10.1093/nar/gkr1235

3uvm, resolution 1.57Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA