Crystal Structure of Yeast Prp8, Residues 1827-2092Crystal Structure of Yeast Prp8, Residues 1827-2092

Structural highlights

3e9p is a 2 chain structure with sequence from Atcc 18824. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:PRP8, DBF3, DNA39, RNA8, SLT21, USA2, YHR165C (ATCC 18824)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[PRP8_YEAST] Required for pre-spliceosome formation, which is the first step of pre-mRNA splicing. This protein is associated with snRNP U5. Has a role in branch site-3' splice site selection. Associates with the branch site-3' splice 3'-exon region. Also has a role in cell cycle.[1] [2] [3] [4]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Precursor-messenger RNA (pre-mRNA) splicing encompasses two sequential transesterification reactions in distinct active sites of the spliceosome that are transiently established by the interplay of small nuclear (sn) RNAs and spliceosomal proteins. Protein Prp8 is an active site component but the molecular mechanisms, by which it might facilitate splicing catalysis, are unknown. We have determined crystal structures of corresponding portions of yeast and human Prp8 that interact with functional regions of the pre-mRNA, revealing a phylogenetically conserved RNase H fold, augmented by Prp8-specific elements. Comparisons to RNase H-substrate complexes suggested how an RNA encompassing a 5'-splice site (SS) could bind relative to Prp8 residues, which on mutation, suppress splice defects in pre-mRNAs and snRNAs. A truncated RNase H-like active centre lies next to a known contact region of the 5'SS and directed mutagenesis confirmed that this centre is a functional hotspot. These data suggest that Prp8 employs an RNase H domain to help assemble and stabilize the spliceosomal catalytic core, coordinate the activities of other splicing factors and possibly participate in chemical catalysis of splicing.

Structure and function of an RNase H domain at the heart of the spliceosome.,Pena V, Rozov A, Fabrizio P, Luhrmann R, Wahl MC EMBO J. 2008 Nov 5;27(21):2929-40. Epub 2008 Oct 9. PMID:18843295[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Jackson SP, Lossky M, Beggs JD. Cloning of the RNA8 gene of Saccharomyces cerevisiae, detection of the RNA8 protein, and demonstration that it is essential for nuclear pre-mRNA splicing. Mol Cell Biol. 1988 Mar;8(3):1067-75. PMID:2835658
  2. Abovich N, Rosbash M. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell. 1997 May 2;89(3):403-12. PMID:9150140
  3. McPheeters DS, Muhlenkamp P. Spatial organization of protein-RNA interactions in the branch site-3' splice site region during pre-mRNA splicing in yeast. Mol Cell Biol. 2003 Jun;23(12):4174-86. PMID:12773561
  4. Yang K, Zhang L, Xu T, Heroux A, Zhao R. Crystal structure of the beta-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13817-22. Epub 2008 Sep 8. PMID:18779563
  5. Pena V, Rozov A, Fabrizio P, Luhrmann R, Wahl MC. Structure and function of an RNase H domain at the heart of the spliceosome. EMBO J. 2008 Nov 5;27(21):2929-40. Epub 2008 Oct 9. PMID:18843295 doi:10.1038/emboj.2008.209

3e9p, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA