1db2
CRYSTAL STRUCTURE OF NATIVE PLASMINOGEN ACTIVATOR INHIBITOR-1CRYSTAL STRUCTURE OF NATIVE PLASMINOGEN ACTIVATOR INHIBITOR-1
Structural highlights
Disease[PAI1_HUMAN] Defects in SERPINE1 are the cause of plasminogen activator inhibitor-1 deficiency (PAI-1D) [MIM:613329]. It is a hematologic disorder characterized by increased bleeding after trauma, injury, or surgery. Affected females have menorrhagia. The bleeding defect is due to increased fibrinolysis of fibrin blood clots due to deficiency of plasminogen activator inhibitor-1, which inhibits tissue and urinary activators of plasminogen.[1] Note=High concentrations of SERPINE1 seem to contribute to the development of venous but not arterial occlusions. Function[PAI1_HUMAN] Serine protease inhibitor. This inhibitor acts as 'bait' for tissue plasminogen activator, urokinase, protein C and matriptase-3/TMPRSS7. Its rapid interaction with PLAT may function as a major control point in the regulation of fibrinolysis.[2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of a constitutively active multiple site mutant of plasminogen activator inhibitor 1 (PAI-1) was determined and refined at a resolution of 2.7 A.The present structure comprises a dimer of two crystallographically independent PAI-1 molecules that pack by association of the residues P6 to P3 of the reactive centre loop of one molecule (A) with the edge of the main beta-sheet A of the other molecule (B).Thus, the reactive centre loop is ordered for molecule A by crystal packing forces, while for molecule B it is unconstrained by crystal packing contacts and is disordered.The overall structure of active PAI-1 is similar to the structures of other active inhibitory serpins exhibiting as the major secondary structural feature a five-stranded beta-sheet A and an intact proteinase-binding loop protruding from the one end of the elongated molecule. No preinsertion of the reactive centre loop is observed in this structure.A comparison of the present structure with the previously determined crystal structures of PAI-1 in its alternative conformations reveals that, upon cleavage of an intact form of PAI-1 or formation of latent PAI-1, the well-characterised rearrangements of the serpin secondary structural elements are accompanied by dramatic and partly unexpected conformational changes of helical and loop structures proximal to beta-sheet A.The present structure explains the stabilising effects of the mutated residues, reveals the structural cause for the observed spectroscopic differences between active and latent PAI-1, and provides new insights into possible mechanisms of stabilisation by its natural binding partner, vitronectin. Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation.,Nar H, Bauer M, Stassen JM, Lang D, Gils A, Declerck PJ J Mol Biol. 2000 Mar 31;297(3):683-95. PMID:10731421[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|