Crystal structure of Tn5 Transposase complexed with ME DNACrystal structure of Tn5 Transposase complexed with ME DNA

Structural highlights

1mm8 is a 3 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:Tn5 Transposases ("Bacillus coli" Migula 1895)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[TN5P_ECOLX] Mediates transposition of transposon Tn5 by a 'cut and paste' mechanism. First, the monomeric transposase binds the 19 bp inverted DNA repeats flanking the transposon. Then, dimerization of the DNA-bound transposase creates a synaptic DNA complex. After nicking of the first DNA strand, excision of the transposon proceeds through a series of intermediates. The transposase then mediates the insertion of the transposon at a new site by strand transfer. The activity of the wild-type transposase is very low, and is further inhibited by dimerization with the transposase inhibitor (inh).[1] [2] [3] [4] [5] [6] [7] [8]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In this study, evidence of novel, important interactions between a hyperactive Tn5 transposon recognition end sequence and hyperactive Tn5 transposase (Tnp) are presented. A hyperactive Tn5 end sequence, the mosaic end (ME), was isolated previously. The ME and a wild-type end sequence, the outside end (OE), differ at only three positions, yet transposition on the ME is tenfold higher than on the OE in vivo. Also, transposition on the ME is much more efficient than transposition on the OE in vitro. Here, we show that the decreased activity observed for the OE is caused by a defect in paired ends complex (PEC) formation resulting from the orientation of the A-T base-pair at position 4 of this end. Efficient PEC formation requires an interaction between the C5-methyl group (C5-Me) on the non-transferred strand thymine base at position 4 (T4) and Tnp. PEC formation on nicked substrates is much less affected by the orientation of the A-T base-pair at position 4, indicating that the C5-Me group is important only for steps preceding nicking. A recently determined co-crystal structure of Tn5 Tnp with the ME is discussed and a model explaining possible roles for the base-pair at position 4 is explored.

Evidence for "unseen" transposase--DNA contacts.,Steiniger-White M, Bhasin A, Lovell S, Rayment I, Reznikoff WS J Mol Biol. 2002 Oct 4;322(5):971-82. PMID:12367522[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Rothstein SJ, Reznikoff WS. The functional differences in the inverted repeats of Tn5 are caused by a single base pair nonhomology. Cell. 1981 Jan;23(1):191-9. PMID:6260374
  2. Johnson RC, Yin JC, Reznikoff WS. Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat. Cell. 1982 Oct;30(3):873-82. PMID:6291786
  3. Lowe JB, Berg DE. A product of the TN5 transposase gene inhibits transposition. Genetics. 1983 Apr;103(4):605-15. PMID:6303899
  4. Wiegand TW, Reznikoff WS. Characterization of two hypertransposing Tn5 mutants. J Bacteriol. 1992 Feb;174(4):1229-39. PMID:1310499
  5. de la Cruz NB, Weinreich MD, Wiegand TW, Krebs MP, Reznikoff WS. Characterization of the Tn5 transposase and inhibitor proteins: a model for the inhibition of transposition. J Bacteriol. 1993 Nov;175(21):6932-8. PMID:8226636
  6. York D, Reznikoff WS. Purification and biochemical analyses of a monomeric form of Tn5 transposase. Nucleic Acids Res. 1996 Oct 1;24(19):3790-6. PMID:8871560
  7. Naumann TA, Reznikoff WS. Tn5 transposase active site mutants. J Biol Chem. 2002 May 17;277(20):17623-9. Epub 2002 Mar 4. PMID:11877443 doi:10.1074/jbc.M200742200
  8. Steiniger-White M, Bhasin A, Lovell S, Rayment I, Reznikoff WS. Evidence for "unseen" transposase--DNA contacts. J Mol Biol. 2002 Oct 4;322(5):971-82. PMID:12367522
  9. Steiniger-White M, Bhasin A, Lovell S, Rayment I, Reznikoff WS. Evidence for "unseen" transposase--DNA contacts. J Mol Biol. 2002 Oct 4;322(5):971-82. PMID:12367522

1mm8, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA