1ueb
Crystal structure of translation elongation factor P from Thermus thermophilus HB8Crystal structure of translation elongation factor P from Thermus thermophilus HB8
Structural highlights
Function[EFP_THET8] Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase (By similarity). Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTranslation elongation factor P (EF-P) stimulates ribosomal peptidyltransferase activity. EF-P is conserved in bacteria and is essential for cell viability. Eukarya and Archaea have an EF-P homologue, eukaryotic initiation factor 5A (eIF-5A). In the present study, we determined the crystal structure of EF-P from Thermus thermophilus HB8 at a 1.65-A resolution. EF-P consists of three beta-barrel domains (I, II, and III), whereas eIF-5A has only two domains (N and C domains). Domain I of EF-P is topologically the same as the N domain of eIF-5A. On the other hand, EF-P domains II and III share the same topology as that of the eIF-5A C domain, indicating that domains II and III arose by duplication. Intriguingly, the N-terminal half of domain II and the C-terminal half of domain III of EF-P have sequence homologies to the N- and C-terminal halves, respectively, of the eIF-5A C domain. The three domains of EF-P are arranged in an "L" shape, with 65- and 53-A-long arms at an angle of 95 degrees, which is reminiscent of tRNA. Furthermore, most of the EF-P protein surface is negatively charged. Therefore, EF-P mimics the tRNA shape but uses domain topologies different from those of the known tRNA-mimicry translation factors. Domain I of EF-P has a conserved positive charge at its tip, like the eIF-5A N domain. Crystal structure of elongation factor P from Thermus thermophilus HB8.,Hanawa-Suetsugu K, Sekine S, Sakai H, Hori-Takemoto C, Terada T, Unzai S, Tame JR, Kuramitsu S, Shirouzu M, Yokoyama S Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9595-600. Epub 2004 Jun 21. PMID:15210970[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|