1mmo
CRYSTAL STRUCTURE OF A BACTERIAL NON-HAEM IRON HYDROXYLASE THAT CATALYSES THE BIOLOGICAL OXIDATION OF METHANECRYSTAL STRUCTURE OF A BACTERIAL NON-HAEM IRON HYDROXYLASE THAT CATALYSES THE BIOLOGICAL OXIDATION OF METHANE
Structural highlights
Function[MEMB_METCA] Responsible for the initial oxygenation of methane to methanol in methanotrophs. It also catalyzes the monohydroxylation of a variety of unactivated alkenes, alicyclic, aromatic and heterocyclic compounds. [MEMG_METCA] Responsible for the initial oxygenation of methane to methanol in methanotrophs. It also catalyzes the monohydroxylation of a variety of unactivated alkenes, alicyclic, aromatic and heterocyclic compounds. [MEMA_METCA] Responsible for the initial oxygenation of methane to methanol in methanotrophs. It also catalyzes the monohydroxylation of a variety of unactivated alkenes, alicyclic, aromatic and heterocyclic compounds. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe 2.2 A crystal structure of the 251K alpha 2 beta 2 gamma 2 dimeric hydroxylase protein of methane monooxygenase from Methylococcus capsulatus (Bath) reveals the geometry of the catalytic di-iron core. The two iron atoms are bridged by exogenous hydroxide and acetate ligands and further coordinated by four glutamate residues, two histidine residues and a water molecule. The dinuclear iron centre lies in a hydrophobic active-site cavity for binding methane. An extended canyon runs between alpha beta pairs, which have many long alpha-helices, for possible docking of the reductase and coupling proteins required for catalysis. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane.,Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P Nature. 1993 Dec 9;366(6455):537-43. PMID:8255292[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|