1jg3
Crystal Structure of L-isoaspartyl (D-aspartyl) O-methyltransferase with adenosine & VYP(ISP)HA substrateCrystal Structure of L-isoaspartyl (D-aspartyl) O-methyltransferase with adenosine & VYP(ISP)HA substrate
Structural highlights
Function[PIMT_PYRFU] Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins (By similarity). Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedProtein L-isoaspartyl (D-aspartyl) methyltransferases (EC 2.1.1.77) are found in almost all organisms. These enzymes catalyze the S-adenosylmethionine (AdoMet)-dependent methylation of isomerized and racemized aspartyl residues in age-damaged proteins as part of an essential protein repair process. Here, we report crystal structures of the repair methyltransferase at resolutions up to 1.2 A from the hyperthermophilic archaeon Pyrococcus furiosus. Refined structures include binary complexes with the active cofactor AdoMet, its reaction product S-adenosylhomocysteine (AdoHcy), and adenosine. The enzyme places the methyl-donating cofactor in a deep, electrostatically negative pocket that is shielded from solvent. Across the multiple crystal structures visualized, the presence or absence of the methyl group on the cofactor correlates with a significant conformational change in the enzyme in a loop bordering the active site, suggesting a role for motion in catalysis or cofactor exchange. We also report the structure of a ternary complex of the enzyme with adenosine and the methyl-accepting polypeptide substrate VYP(L-isoAsp)HA at 2.1 A. The substrate binds in a narrow active site cleft with three of its residues in an extended conformation, suggesting that damaged proteins may be locally denatured during the repair process in cells. Manual and computer-based docking studies on different isomers help explain how the enzyme uses steric effects to make the critical distinction between normal L-aspartyl and age-damaged L-isoaspartyl and D-aspartyl residues. Crystal structure of a protein repair methyltransferase from Pyrococcus furiosus with its L-isoaspartyl peptide substrate.,Griffith SC, Sawaya MR, Boutz DR, Thapar N, Katz JE, Clarke S, Yeates TO J Mol Biol. 2001 Nov 9;313(5):1103-16. PMID:11700066[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|