2p4r
Structural basis for a novel interaction between AIP4 and beta-PIXStructural basis for a novel interaction between AIP4 and beta-PIX
Structural highlights
Disease[ITCH_HUMAN] Defects in ITCH are the cause of syndromic multisystem autoimmune disease (SMAD) [MIM:613385]. SMAD is characterized by organomegaly, failure to thrive, developmental delay, dysmorphic features and autoimmune inflammatory cell infiltration of the lungs, liver and gut.[1] Function[ARHG7_RAT] Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions. May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons (By similarity). [ITCH_HUMAN] Acts as an E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. It catalyzes 'Lys-29'-, 'Lys-48'- and 'Lys-63'-linked ubiquitin conjugation. It is involved in the control of inflammatory signaling pathways. Is an essential component of a ubiquitin-editing protein complex, comprising also TNFAIP3, TAX1BP1 and RNF11, that ensures the transient nature of inflammatory signaling pathways. Promotes the association of the complex after TNF stimulation. Once the complex is formed, TNFAIP3 deubiquitinates 'Lys-63' polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NFKB1. Ubiquitinates RIPK2 by 'Lys-63'-linked conjugation and influences NOD2-dependent signal transduction pathways. Regulates the transcriptional activity of several transcription factors, and probably plays an important role in the regulation of immune response. Ubiquitinates NFE2 by 'Lys-63' linkages and is implicated in the control of the development of hematopoietic lineages. Critical regulator of T-helper (TH2) cytokine development through its ability to induce JUNB ubiquitination and degradation (By similarity). Ubiquitinates SNX9. Ubiquitinates CXCR4 and HGS/HRS and regulates sorting of CXCR4 to the degradative pathway. It is involved in the negative regulation of MAVS-dependent cellular antiviral responses. Ubiquitinates MAVS through 'Lys-48'-linked conjugation resulting in MAVS proteasomal degradation. Involved in the regulation of apoptosis and reactive oxygen species levels through the ubiquitination and proteasomal degradation of TXNIP. Mediates the antiapoptotic activity of epidermal growth factor through the ubiquitination and proteasomal degradation of p15 BID. Targets DTX1 for lysosomal degradation and controls NOTCH1 degradation, in the absence of ligand, through 'Lys-29'-linked polyubiquitination.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCross-talk between G protein-coupled receptors and receptor tyrosine kinase signaling pathways is crucial to the efficient relay and integration of cellular information. Here we identify and define the novel binding interaction of the E3 ubiquitin ligase atrophin-interacting protein 4 (AIP4) with the GTP exchange factor beta-p21-activated kinase-interactive exchange factor (beta PIX). We demonstrate that this interaction is mediated in part by the beta PIX-SH3 domain binding to a proline-rich stretch of AIP4. Analysis of the interaction by isothermal calorimetry is consistent with a heterotrimeric complex with one AIP4-derived peptide binding to two beta PIX-SH3 domains. We determined the crystal structure of the beta PIX-SH3.AIP4 complex to 2.0-A resolution. In contrast to the calorimetry results, the crystal structure shows a monomeric complex in which AIP4 peptide binds the beta PIX-SH3 domain as a canonical Class I ligand with an additional type II polyproline helix that makes extensive contacts with another face of beta PIX. Taken together, the novel interaction between AIP4 and beta PIX represents a new regulatory node for G protein-coupled receptor and receptor tyrosine kinase signal integration. Our structure of the beta PIX-SH3.AIP4 complex provides important insight into the mechanistic basis for beta PIX scaffolding of signaling components, especially those involved in cross-talk. A novel interaction between atrophin-interacting protein 4 and beta-p21-activated kinase-interactive exchange factor is mediated by an SH3 domain.,Janz JM, Sakmar TP, Min KC J Biol Chem. 2007 Sep 28;282(39):28893-903. Epub 2007 Jul 25. PMID:17652093[13] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|