Sandbox GGC9
Structure of RAG1/2-DNA Strand Transfer Complex (paired conformation)Structure of RAG1/2-DNA Strand Transfer Complex (paired conformation)
RAG1 is the catalytic component of the RAG Complex. Together with RAG2, the RAG Complex functions to create antibodies for virtually any antigen. FunctionRAG1 and RAG2 form the RAG Complex (RAG Recombinases), which is responsible for regulating the DNA cleavage phase during recombination. V(D)J recombination functions to produce a plethora of immune molecules in developing B and T-lymphocytes. The V stands for variable, D, diversity and J joining of the gene segments. RAG1 functions as the catalytic portion while RAG2, although not catalytic, is required for RAG1 to function.[1] RAG1 controls the ability of the DNA to bind to the RSS or recombination signal sequences. This is achieved by the ability of the RAG1 complex to create a double-stranded break between the (RSS) and the adjacent coding sequence. This process is executed in the following way: introduction of a nick, creating a 3'-hydroxyl group which attacks the phosphodiester bond on the opposite strand.[1] This is a direct transesterification reaction which results in four DNA ends. Histones also assist in the nicking and hairpinning of the strands. The result is the recombination of variable genes joining.[1] Additionally to the role played in V(D)J, RAG also assists in pre-B cell allelic exclusion. This means that there is a recombination of the second allele. RAG1 also possess ubiquitin properties. Newer Studies suggest that the RAG1/2 recombinase complex acts as a domesticated transposase.[2] DiseaseRelevanceStructural highlightsThe subunit structure is defined as a homodimer. The RAG complex consists of RAG1 and RAG2 with associated components of HMGB1 and HMGB2. The complex also interacts with DCAF1 and leads to the recruitment of another protein complex to ubiquitinate proteins. This is a sample scene created with SAT to by Group, and another to make of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
|
|
ReferencesReferences
[1] Grazini U, Zanardi F, Citterio E, Casola S, Goding CR, McBlane F. The RING domain of RAG1 ubiquitylates histone H3: a novel activity in chromatin-mediated regulation of V(D)J joining. Mol Cell. 2010 Jan 29;37(2):282-93. doi: 10.1016/j.molcel.2009.12.035. PMID: 20122409.
[2] Zhang Y, Corbett E, Wu S, Schatz DG. Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase. EMBO J. 2020 Nov 2;39(21):e105857. doi: 10.15252/embj.2020105857. Epub 2020 Sep 18. PMID: 32945578; PMCID: PMC7604617.