1fjh
THE CRYSTAL STRUCTURE OF 3-ALPHA-HYDROXYSTEROID DEHYDROGENASE FROM COMAMONAS TESTOSTERONI, A MEMBER OF THE SHORT CHAIN DEHYDROGENASE/REDUCTASE FAMILYTHE CRYSTAL STRUCTURE OF 3-ALPHA-HYDROXYSTEROID DEHYDROGENASE FROM COMAMONAS TESTOSTERONI, A MEMBER OF THE SHORT CHAIN DEHYDROGENASE/REDUCTASE FAMILY
Structural highlights
Function[DIDH_COMTE] Catalyzes the reversible interconversion of hydroxy and oxo groups at position 3 of the steroid nucleus. Along with the 3 alpha-hydroxysteroid dehydrogenase and 3-oxo-reductase activities towards a variety of cis or trans fused A/B ring steroids, it also reduces several xenobiotic carbonyl compounds, including a metyrapone-based class of insecticides, to the respective alcohol metabolites. No detectable activity on testosterone, progesterone or 3-oxo-desogestrel. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni (3alpha-HSDH) as well as the structure of its binary complex with NAD(+) have been solved at 1.68-A and 1.95-A resolution, respectively. The enzyme is a member of the short chain dehydrogenase/reductase (SDR) family. Accordingly, the active center and the conformation of the bound nucleotide cofactor closely resemble those of other SDRs. The crystal structure reveals one homodimer per asymmetric unit representing the physiologically active unity. Dimerization takes place via an interface essentially built-up by helix alphaG and strand betaG of each subunit. So far this type of intermolecular contact has exclusively been observed in homotetrameric SDRs but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSDH by the presence of a predominantly alpha-helical subdomain which is missing in all other SDRs of known structure. The crystal structure of 3alpha -hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family.,Grimm C, Maser E, Mobus E, Klebe G, Reuter K, Ficner R J Biol Chem. 2000 Dec 29;275(52):41333-9. PMID:11007791[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|