1d9h

From Proteopedia
Revision as of 21:22, 10 March 2021 by OCA (talk | contribs)
Jump to navigation Jump to search

Structural origins of the exonuclease resistance of a zwitterionic RNAStructural origins of the exonuclease resistance of a zwitterionic RNA

Structural highlights

1d9h is a 2 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Publication Abstract from PubMed

Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2'-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1 degrees C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3' ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3'-5' exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-A resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 A and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2'-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.

Structural origins of the exonuclease resistance of a zwitterionic RNA.,Teplova M, Wallace ST, Tereshko V, Minasov G, Symons AM, Cook PD, Manoharan M, Egli M Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14240-5. PMID:10588690[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Teplova M, Wallace ST, Tereshko V, Minasov G, Symons AM, Cook PD, Manoharan M, Egli M. Structural origins of the exonuclease resistance of a zwitterionic RNA. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14240-5. PMID:10588690

1d9h, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA