Crystal structure of the CLIP-170 CAP-Gly domain 2Crystal structure of the CLIP-170 CAP-Gly domain 2

Structural highlights

2e3h is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:CLIP-170 (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[REST_HUMAN] Transcriptional repressor which binds neuron-restrictive silencer element (NRSE) and represses neuronal gene transcription in non-neuronal cells. Restricts the expression of neuronal genes by associating with two distinct corepressors, mSin3 and CoREST, which in turn recruit histone deacetylase to the promoters of REST-regulated genes. Mediates repression by recruiting the BHC complex at RE1/NRSE sites which acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier.[1] [2] [3] [4]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Cytoplasmic linker protein 170 (CLIP-170) is a prototype of the plus end-tracking proteins that regulate microtubule dynamics, but it is obscure how CLIP-170 recognizes the microtubule plus end and contributes to polymerization rescue. Crystallographic, NMR, and mutation studies of two tandem cytoskeleton-associated protein glycine-rich (CAP-Gly) domains of CLIP-170, CAP-Gly-1 and CAP-Gly-2, revealed positively charged basic grooves of both CAP-Gly domains for tubulin binding, whereas the CAP-Gly-2 domain possesses a more basic groove and directly binds the EExEEY/F motif of the C-terminal acidic-tail ends of alpha-tubulin. Notably, the p150(Glued) CAP-Gly domain that is furnished with a less positively charged surface only weakly interacts with the alpha-tubulin acidic tail. Mutation studies showed that this acidic sextette motif is the minimum region for CAP-Gly binding. The C-terminal zinc knuckle domains of CLIP-170 bind the basic groove to inhibit the binding to the acidic tails. These results provide a structural basis for the proposed CLIP-170 copolymerization with tubulin on the microtubule plus end. CLIP-170 strongly binds the acidic tails of EB1 as well as those of alpha-tubulins, indicating that EB1 localized at the plus end contributes to CLIP-170 recruitment to the plus end. We suggest that CLIP-170 stimulates microtubule polymerization and/or nucleation by neutralizing the negative charges of tubulins with the highly positive charges of the CLIP-170 CAP-Gly domains. Once CLIP-170 binds microtubule, the released zinc knuckle domain may serve to recruit dynein to the plus end by interacting with p150(Glued) and LIS1. Thus, our structures provide the structural basis for the specific dynein loading on the microtubule plus end.

Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition.,Mishima M, Maesaki R, Kasa M, Watanabe T, Fukata M, Kaibuchi K, Hakoshima T Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10346-51. Epub 2007 Jun 11. PMID:17563362[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell. 1995 Mar 24;80(6):949-57. PMID:7697725
  2. Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science. 1995 Mar 3;267(5202):1360-3. PMID:7871435
  3. Scholl T, Stevens MB, Mahanta S, Strominger JL. A zinc finger protein that represses transcription of the human MHC class II gene, DPA. J Immunol. 1996 Feb 15;156(4):1448-57. PMID:8568247
  4. Lunyak VV, Burgess R, Prefontaine GG, Nelson C, Sze SH, Chenoweth J, Schwartz P, Pevzner PA, Glass C, Mandel G, Rosenfeld MG. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science. 2002 Nov 29;298(5599):1747-52. Epub 2002 Oct 24. PMID:12399542 doi:10.1126/science.1076469
  5. Mishima M, Maesaki R, Kasa M, Watanabe T, Fukata M, Kaibuchi K, Hakoshima T. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10346-51. Epub 2007 Jun 11. PMID:17563362

2e3h, resolution 1.45Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA