1zvl

From Proteopedia
Revision as of 11:18, 27 January 2021 by OCA (talk | contribs)
Jump to navigation Jump to search

Rat Neuronal Nitric Oxide Synthase Oxygenase Domain complexed with natural substrate L-Arg.Rat Neuronal Nitric Oxide Synthase Oxygenase Domain complexed with natural substrate L-Arg.

Structural highlights

1zvl is a 2 chain structure with sequence from Buffalo rat. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Gene:Nos1, Bnos (Buffalo rat)
Activity:Nitric-oxide synthase (NADPH dependent), with EC number 1.14.13.39
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[NOS1_RAT] Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. Inhibitory transmitter for non-adrenergic and non-cholinergic nerves in the colorectum.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Nitric oxide synthesized from l-arginine by nitric oxide synthase isoforms (NOS-I-III) is physiologically important but also can be deleterious when overproduced. Selective NOS inhibitors are of clinical interest, given their differing pathophysiological roles. Here we describe our approach to target the unique NOS (6R,1'R,2'S)-5,6,7,8-tetrahydrobiopterin (H(4)Bip) binding site. By a combination of ligand- and structure-based design, the structure-activity relationship (SAR) for a focused set of 41 pteridine analogues on four scaffolds was developed, revealing selective NOS-I inhibitors. The X-ray crystal structure of rat NOS-I dimeric-oxygenase domain with H(4)Bip and l-arginine was determined and used for human isoform homology modeling. All available NOS structural information was subjected to comparative analysis of favorable protein-ligand interactions using the GRID/concensus principal component analysis (CPCA) approach to identify the isoform-specific interaction site. Our interpretation, based on protein structures, is in good agreement with the ligand SAR and thus permits the rational design of next-generation inhibitors targeting the H(4)Bip binding site with enhanced isoform selectivity for therapeutics in pathology with NO overproduction.

Structural analysis of isoform-specific inhibitors targeting the tetrahydrobiopterin binding site of human nitric oxide synthases.,Matter H, Kumar HS, Fedorov R, Frey A, Kotsonis P, Hartmann E, Frohlich LG, Reif A, Pfleiderer W, Scheurer P, Ghosh DK, Schlichting I, Schmidt HH J Med Chem. 2005 Jul 28;48(15):4783-92. PMID:16033258[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Matter H, Kumar HS, Fedorov R, Frey A, Kotsonis P, Hartmann E, Frohlich LG, Reif A, Pfleiderer W, Scheurer P, Ghosh DK, Schlichting I, Schmidt HH. Structural analysis of isoform-specific inhibitors targeting the tetrahydrobiopterin binding site of human nitric oxide synthases. J Med Chem. 2005 Jul 28;48(15):4783-92. PMID:16033258 doi:10.1021/jm050007x

1zvl, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA