The third PDZ domain from the synaptic protein PSD-95 (G330T, H372A double mutant) in complex with a mutant C-terminal peptide derived from CRIPT (T-2F)The third PDZ domain from the synaptic protein PSD-95 (G330T, H372A double mutant) in complex with a mutant C-terminal peptide derived from CRIPT (T-2F)

Structural highlights

5hff is a 2 chain structure with sequence from Buffalo rat. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:Dlg4, Dlgh4, Psd95 (Buffalo rat)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[DLG4_RAT] Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B.[1] [2] [CRIPT_RAT] Involved in the cytoskeletal anchoring of DLG4 in excitatory synapses.[3] [4]

Publication Abstract from PubMed

Proteins display the capacity for adaptation to new functions, a property critical for evolvability. But what structural principles underlie the capacity for adaptation? Here, we show that adaptation to a physiologically distinct class of ligand specificity in a PSD95, DLG1, ZO-1 (PDZ) domain preferentially occurs through class-bridging intermediate mutations located distant from the ligand-binding site. These mutations provide a functional link between ligand classes and demonstrate the principle of "conditional neutrality" in mediating evolutionary adaptation. Structures show that class-bridging mutations work allosterically to open up conformational plasticity at the active site, permitting novel functions while retaining existing function. More generally, the class-bridging phenotype arises from mutations in an evolutionarily conserved network of coevolving amino acids in the PDZ family (the sector) that connects the active site to distant surface sites. These findings introduce the concept that allostery in proteins could have its origins not in protein function but in the capacity to adapt.

Origins of Allostery and Evolvability in Proteins: A Case Study.,Raman AS, White KI, Ranganathan R Cell. 2016 Jul 14;166(2):468-80. doi: 10.1016/j.cell.2016.05.047. Epub 2016 Jun, 16. PMID:27321669[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Hruska-Hageman AM, Benson CJ, Leonard AS, Price MP, Welsh MJ. PSD-95 and Lin-7b interact with acid-sensing ion channel-3 and have opposite effects on H+- gated current. J Biol Chem. 2004 Nov 5;279(45):46962-8. Epub 2004 Aug 17. PMID:15317815 doi:10.1074/jbc.M405874200
  2. Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13915-20. Epub 2004 Sep 9. PMID:15358863 doi:10.1073/pnas.0405939101
  3. Passafaro M, Sala C, Niethammer M, Sheng M. Microtubule binding by CRIPT and its potential role in the synaptic clustering of PSD-95. Nat Neurosci. 1999 Dec;2(12):1063-9. PMID:10570482 doi:http://dx.doi.org/10.1038/15990
  4. Niethammer M, Valtschanoff JG, Kapoor TM, Allison DW, Weinberg RJ, Craig AM, Sheng M. CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD-95/SAP90. Neuron. 1998 Apr;20(4):693-707. PMID:9581762
  5. Raman AS, White KI, Ranganathan R. Origins of Allostery and Evolvability in Proteins: A Case Study. Cell. 2016 Jul 14;166(2):468-80. doi: 10.1016/j.cell.2016.05.047. Epub 2016 Jun, 16. PMID:27321669 doi:http://dx.doi.org/10.1016/j.cell.2016.05.047

5hff, resolution 1.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA