5lmr
Structure of bacterial 30S-IF1-IF3-mRNA-tRNA translation pre-initiation complex(state-2B)Structure of bacterial 30S-IF1-IF3-mRNA-tRNA translation pre-initiation complex(state-2B)
Structural highlights
Function[RS11_THET8] Located on the upper part of the platform of the 30S subunit, where it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome, where it interacts both with the Shine-Dalgarno helix and mRNA.[HAMAP-Rule:MF_01310] [RSHX_THET8] Binds at the top of the head of the 30S subunit. It stabilizes a number of different RNA elements and thus is important for subunit structure. [RS7_THET8] One of the primary rRNA binding proteins, it binds directly to 3'-end of the 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center. Binds mRNA and the E site tRNA blocking its exit path in the ribosome. This blockage implies that this section of the ribosome must be able to move to release the deacetylated tRNA.[HAMAP-Rule:MF_00480_B] [RS2_THET8] Spans the head-body hinge region of the 30S subunit. Is loosely associated with the 30S subunit.[HAMAP-Rule:MF_00291_B] [RS17_THET8] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform and body of the 30S subunit by bringing together and stabilizing interactions between several different RNA helices. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.[HAMAP-Rule:MF_01345] Deletion of the protein leads to an increased generation time and a temperature-sensitive phenotype.[HAMAP-Rule:MF_01345] [IF1_THET8] One of the essential components for the initiation of protein synthesis. Binds in the vicinity of the A-site (ECO:0000269|PubMed:11228145). Stabilizes the binding of IF-2 and IF-3 on the 30S subunit to which N-formylmethionyl-tRNA(fMet) subsequently binds. Helps modulate mRNA selection, yielding the 30S pre-initiation complex (PIC). Upon addition of the 50S ribosomal subunit IF-1, IF-2 and IF-3 are released leaving the mature 70S translation initation complex.[HAMAP-Rule:MF_00075][1] [RS18_THET8] Located on the back of the platform of the 30S subunit where it stabilizes the close packing of several RNA helices of the 16S rRNA. Forms part of the Shine-Dalgarno cleft in the 70S ribosome, where it probably interacts with the Shine-Dalgarno helix.[HAMAP-Rule:MF_00270] [IF3_THET8] IF-3 binds to the 30S ribosomal subunit and shifts the equilibrum between 70S ribosomes and their 50S and 30S subunits in favor of the free subunits, thus enhancing the availability of 30S subunits on which protein synthesis initiation begins. [RS13_THET8] Located at the top of the head of the 30S subunit, it contacts several helices of the 16S rRNA. In the 70S ribosome structure it contacts the 23S rRNA (bridge B1a) and protein L5 of the 50S subunit (bridge B1b), connecting the top of the two subunits; these bridges are in contact with the A site and P site tRNAs respectively and are implicated in movement during ribosome translocation. Separately contacts the tRNAs in the A and P sites.[HAMAP-Rule:MF_01315] [RS16_THET8] Binds to the lower part of the body of the 30S subunit, where it stabilizes two of its domains.[HAMAP-Rule:MF_00385] [RS6_THET8] Located on the outer edge of the platform on the body of the 30S subunit.[HAMAP-Rule:MF_00360] [RS3_THET8] Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation.[HAMAP-Rule:MF_01309_B] [RS9_THET8] Part of the top of the head of the 30S subunit. The C-terminal region penetrates the head emerging in the P-site where it contacts tRNA.[HAMAP-Rule:MF_00532_B] [RS12_THET8] With S4 and S5 plays an important role in translational accuracy (By similarity).[HAMAP-Rule:MF_00403_B] Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.[HAMAP-Rule:MF_00403_B] [RS14Z_THET8] Required for the assembly of 30S particles and may also be responsible for determining the conformation of the 16S rRNA at the A site (By similarity). Binds 16S rRNA in center of the 30S subunit head.[HAMAP-Rule:MF_01364_B] [RS15_THET8] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA (By similarity).[HAMAP-Rule:MF_01343] Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.[HAMAP-Rule:MF_01343] [RS20_THET8] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the bottom of the body of the 30S subunit, by binding to several RNA helices of the 16S rRNA.[HAMAP-Rule:MF_00500] [RS8_THET8] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit central domain. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.[HAMAP-Rule:MF_01302_B] [RS4_THET8] One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the body and platform of the 30S subunit. Binds mRNA in the 70S ribosome, positioning it for translation.[HAMAP-Rule:MF_01306_B] [RS10_THET8] Part of the top of the 30S subunit head.[HAMAP-Rule:MF_00508] [RS19_THET8] Located at the top of the head of the 30S subunit, extending towards the 50S subunit, which it may contact in the 70S complex. Contacts several RNA helices of the 16S rRNA.[HAMAP-Rule:MF_00531] [RS5_THET8] With S4 and S12 plays an important role in translational accuracy (By similarity).[HAMAP-Rule:MF_01307_B] Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Binds mRNA in the 70S ribosome, positioning it for translation.[HAMAP-Rule:MF_01307_B] Publication Abstract from PubMedIn bacterial translational initiation, three initiation factors (IFs 1-3) enable the selection of initiator tRNA and the start codon in the P site of the 30S ribosomal subunit. Here, we report 11 single-particle cryo-electron microscopy (cryoEM) reconstructions of the complex of bacterial 30S subunit with initiator tRNA, mRNA, and IFs 1-3, representing different steps along the initiation pathway. IF1 provides key anchoring points for IF2 and IF3, thereby enhancing their activities. IF2 positions a domain in an extended conformation appropriate for capturing the formylmethionyl moiety charged on tRNA. IF3 and tRNA undergo large conformational changes to facilitate the accommodation of the formylmethionyl-tRNA (fMet-tRNA(fMet)) into the P site for start codon recognition. Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation.,Hussain T, Llacer JL, Wimberly BT, Kieft JS, Ramakrishnan V Cell. 2016 Sep 22;167(1):133-144.e13. doi: 10.1016/j.cell.2016.08.074. PMID:27662086[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|