Structural highlights
Function
[SCC1_YEAST] Cleavable component of the cohesin complex involved in chromosome cohesion during cell cycle. The cohesin complex is required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At metaphase-anaphase transition, this protein is cleaved by ESP1 and dissociates from chromatin, allowing sister chromatids to segregate.[1] [2] [3] [4] [SMC3_YEAST] Involved in chromosome cohesion during cell cycle and in DNA repair. Central component of cohesin complex. The cohesin complex is required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate.
References
- ↑ Michaelis C, Ciosk R, Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997 Oct 3;91(1):35-45. PMID:9335333
- ↑ Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell. 1997 Oct 3;91(1):47-57. PMID:9335334
- ↑ Heo SJ, Tatebayashi K, Kato J, Ikeda H. The RHC21 gene of budding yeast, a homologue of the fission yeast rad21+ gene, is essential for chromosome segregation. Mol Gen Genet. 1998 Jan;257(2):149-56. PMID:9491073
- ↑ Uhlmann F, Lottspeich F, Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999 Jul 1;400(6739):37-42. PMID:10403247 doi:http://dx.doi.org/10.1038/21831