Structural highlights6py8 is a 10 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Gene: | NRARP (HUMAN), RBPJ, IGKJRB, IGKJRB1, RBPJK, RBPSUH (HUMAN), NOTCH1, TAN1 (HUMAN) |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease[SUH_HUMAN] Defects in RBPJ are the cause of Adams-Oliver syndrome 3 (AOS3) [MIM:614814]. An autosomal dominant form of Adams-Oliver syndrome, a disorder characterized by the congenital absence of skin (aplasia cutis congenita) in combination with transverse limb defects. Aplasia cutis congenita can be located anywhere on the body, but in the vast majority of the cases, it is present on the posterior parietal region where it is often associated with an underlying defect of the parietal bones. Limb abnormalities are typically limb truncation defects affecting the distal phalanges or entire digits (true ectrodactyly). Only rarely, metatarsals/metacarpals or more proximal limb structures are also affected. Apart from transverse limb defects, syndactyly, most commonly of second and third toes, can also be observed. The clinical features are highly variable and can also include cardiovascular malformations, brain abnormalities and vascular defects such as cutis marmorata and dilated scalp veins. AOS3 patients manifest characteristic vertex scalp defects and terminal limb defects, but without congenital heart defects, other associated defects, or immune defects.[1] [NOTC1_HUMAN] Defects in NOTCH1 are a cause of aortic valve disease 1 (AOVD1) [MIM:109730]. A common defect in the aortic valve in which two rather than three leaflets are present. It is often associated with aortic valve calcification and insufficiency. In extreme cases, the blood flow may be so restricted that the left ventricle fails to grow, resulting in hypoplastic left heart syndrome.[2]
Function[SUH_HUMAN] Transcriptional regulator that plays a central role in Notch signaling, a signaling pathway involved in cell-cell communication that regulates a broad spectrum of cell-fate determinations. Acts as a transcriptional repressor when it is not associated with Notch proteins. When associated with some NICD product of Notch proteins (Notch intracellular domain), it acts as a transcriptional activator that activates transcription of Notch target genes. Probably represses or activates transcription via the recruitment of chromatin remodeling complexes containing histone deacetylase or histone acetylase proteins, respectively. Specifically binds to the immunoglobulin kappa-type J segment recombination signal sequence. Binds specifically to methylated DNA.[3] [NRARP_HUMAN] Downstream effector of Notch signaling. Involved in the regulation of liver cancer cells self-renewal (PubMed:25985737). Involved in angiogenesis acting downstream of Notch at branch points to regulate vascular density. Proposed to integrate endothelial Notch and Wnt signaling to control stalk cell proliferation and to stablilize new endothelial connections during angiogenesis (PubMed:19154719). During somitogenesis involved in maintenance of proper somite segmentation and proper numbers of somites and vertebrae. Required for proper anterior-posterior somite patterning. Proposed to function in a negative feedback loop to destabilize Notch 1 intracellular domain (NICD) and downregulate the Notch signal, preventing expansion of the Notch signal into the anterior somite domain (By similarity).[UniProtKB:Q91ZA8][4] [5] [6] [NOTC1_HUMAN] Functions as a receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. May be important for normal lymphocyte function. In altered form, may contribute to transformation or progression in some T-cell neoplasms. Involved in the maturation of both CD4+ and CD8+ cells in the thymus. May be important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, may function as a receptor for neuronal DNER and may be involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May enhance HIF1A function by sequestering HIF1AN away from HIF1A (By similarity).
References
- ↑ Hassed SJ, Wiley GB, Wang S, Lee JY, Li S, Xu W, Zhao ZJ, Mulvihill JJ, Robertson J, Warner J, Gaffney PM. RBPJ mutations identified in two families affected by Adams-Oliver syndrome. Am J Hum Genet. 2012 Aug 10;91(2):391-5. doi: 10.1016/j.ajhg.2012.07.005. PMID:22883147 doi:10.1016/j.ajhg.2012.07.005
- ↑ Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005 Sep 8;437(7056):270-4. Epub 2005 Jul 17. PMID:16025100 doi:10.1038/nature03940
- ↑ Bartels SJ, Spruijt CG, Brinkman AB, Jansen PW, Vermeulen M, Stunnenberg HG. A SILAC-based screen for Methyl-CpG binding proteins identifies RBP-J as a DNA methylation and sequence-specific binding protein. PLoS One. 2011;6(10):e25884. doi: 10.1371/journal.pone.0025884. Epub 2011 Oct 3. PMID:21991380 doi:10.1371/journal.pone.0025884
- ↑ Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, Ondr JK, Rao S, Lang RA, Thurston G, Gerhardt H. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell. 2009 Jan;16(1):70-82. doi: 10.1016/j.devcel.2008.12.009. PMID:19154719 doi:http://dx.doi.org/10.1016/j.devcel.2008.12.009
- ↑ Zhu P, Wang Y, Du Y, He L, Huang G, Zhang G, Yan X, Fan Z. C8orf4 negatively regulates self-renewal of liver cancer stem cells via suppression of NOTCH2 signalling. Nat Commun. 2015 May 19;6:7122. doi: 10.1038/ncomms8122. PMID:25985737 doi:http://dx.doi.org/10.1038/ncomms8122
- ↑ Zhu P, Wang Y, Du Y, He L, Huang G, Zhang G, Yan X, Fan Z. C8orf4 negatively regulates self-renewal of liver cancer stem cells via suppression of NOTCH2 signalling. Nat Commun. 2015 May 19;6:7122. doi: 10.1038/ncomms8122. PMID:25985737 doi:http://dx.doi.org/10.1038/ncomms8122
| |