Cryo-EM structure of MLL1 in complex with RbBP5 and WDR5 bound to the nucleosomeCryo-EM structure of MLL1 in complex with RbBP5 and WDR5 bound to the nucleosome

Structural highlights

6pwv is a 16 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:Histone-lysine N-methyltransferase, with EC number 2.1.1.43
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[KMT2A_HUMAN] Acute myeloid leukemia with 11q23 abnormalities;Precursor B-cell acute lymphoblastic leukemia;Wiedemann-Steiner syndrome;Acute biphenotypic leukemia;Acute undifferentiated leukemia;Bilineal acute leukemia. The disease is caused by mutations affecting the gene represented in this entry. Chromosomal aberrations involving KMT2A are a cause of acute leukemias. Translocation t(1;11)(q21;q23) with MLLT11/AF1Q; translocation t(3;11)(p21;q23) with NCKIPSD/AF3p21; translocation t(3,11)(q25,q23) with GMPS; translocation t(4;11)(q21;q23) with AFF1/MLLT2/AF4; insertion ins(5;11)(q31;q13q23) with AFF4/AF5Q31; translocation t(5;11)(q12;q23) with AF5-alpha/CENPK; translocation t(6;11)(q27;q23) with MLLT4/AF6; translocation t(9;11)(p22;q23) with MLLT3/AF9; translocation t(10;11)(p11.2;q23) with ABI1; translocation t(10;11)(p12;q23) with MLLT10/AF10; t(11;15)(q23;q14) with CASC5 and ZFYVE19; translocation t(11;17)(q23;q21) with MLLT6/AF17; translocation t(11;19)(q23;p13.3) with ELL; translocation t(11;19)(q23;p13.3) with MLLT1/ENL; translocation t(11;19)(q23;p23) with GAS7; translocation t(X;11)(q13;q23) with FOXO4/AFX1. Translocation t(3;11)(q28;q23) with LPP. Translocation t(10;11)(q22;q23) with TET1. Translocation t(9;11)(q34;q23) with DAB2IP. Translocation t(4;11)(p12;q23) with FRYL. Fusion proteins KMT2A-MLLT1, KMT2A-MLLT3 and KMT2A-ELL interact with PPP1R15A and, on the contrary to unfused KMT2A, inhibit PPP1R15A-induced apoptosis. A chromosomal aberration involving KMT2A may be a cause of chronic neutrophilic leukemia. Translocation t(4;11)(q21;q23) with SEPT11.

Function

[H2A1_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [ASH2L_HUMAN] Component of the Set1/Ash2 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3, but not if the neighboring 'Lys-9' residue is already methylated. As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3. May function as a transcriptional regulator. May play a role in hematopoiesis.[1] [2] [KMT2A_HUMAN] Histone methyltransferase that plays an essential role in early development and hematopoiesis. Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac). In the MLL1/MLL complex, it specifically mediates H3K4me, a specific tag for epigenetic transcriptional activation. Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity. Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9'. Required for transcriptional activation of HOXA9. Promotes PPP1R15A-induced apoptosis.[3] [4] [5] [6] [H2B11_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [WDR5_HUMAN] Contributes to histone modification. May position the N-terminus of histone H3 for efficient trimethylation at 'Lys-4'. As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. May regulate osteoblasts differentiation.[7] [8] [9] [10] [11] [RBBP5_HUMAN] In embryonic stem (ES) cells, plays a crucial role in the differentiation potential, particularly along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci, including that mediated by retinoic acid (By similarity). As part of the MLL1/MLL complex, involved in mono-, di- and trimethylation at 'Lys-4' of histone H3. Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation.[12] [H32_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [DPY30_HUMAN] As part of the MLL1/MLL complex, involved in the methylation of histone H3 at 'Lys-4', particularly trimethylation. Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. May play some role in histone H3 acetylation. In a teratocarcinoma cell, plays a crucial role in retinoic acid-induced differentiation along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci. May also play an indirect or direct role in endosomal transport.[13] [14] [15] [H4_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.

Publication Abstract from PubMed

Mixed lineage leukemia (MLL) family histone methyltransferases are enzymes that deposit histone H3 Lys4 (K4) mono-/di-/tri-methylation and regulate gene expression in mammals. Despite extensive structural and biochemical studies, the molecular mechanisms whereby the MLL complexes recognize histone H3K4 within nucleosome core particles (NCPs) remain unclear. Here we report the single-particle cryo-electron microscopy (cryo-EM) structure of the NCP-bound human MLL1 core complex. We show that the MLL1 core complex anchors to the NCP via the conserved RbBP5 and ASH2L, which interact extensively with nucleosomal DNA and the surface close to the N-terminal tail of histone H4. Concurrent interactions of RbBP5 and ASH2L with the NCP uniquely align the catalytic MLL1(SET) domain at the nucleosome dyad, thereby facilitating symmetrical access to both H3K4 substrates within the NCP. Our study sheds light on how the MLL1 complex engages chromatin and how chromatin binding promotes MLL1 tri-methylation activity.

Cryo-EM structure of the human MLL1 core complex bound to the nucleosome.,Park SH, Ayoub A, Lee YT, Xu J, Kim H, Zheng W, Zhang B, Sha L, An S, Zhang Y, Cianfrocco MA, Su M, Dou Y, Cho US Nat Commun. 2019 Dec 5;10(1):5540. doi: 10.1038/s41467-019-13550-2. PMID:31804488[16]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev. 2003 Apr 1;17(7):896-911. PMID:12670868 doi:10.1101/gad.252103
  2. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem. 2009 Sep 4;284(36):24242-56. Epub 2009 Jun 25. PMID:19556245 doi:M109.014498
  3. Adler HT, Chinery R, Wu DY, Kussick SJ, Payne JM, Fornace AJ Jr, Tkachuk DC. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol. 1999 Oct;19(10):7050-60. PMID:10490642
  4. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell. 2002 Nov;10(5):1119-28. PMID:12453419
  5. Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell. 2005 Jun 17;121(6):873-85. PMID:15960975 doi:10.1016/j.cell.2005.04.031
  6. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem. 2009 Sep 4;284(36):24242-56. Epub 2009 Jun 25. PMID:19556245 doi:M109.014498
  7. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem. 2009 Sep 4;284(36):24242-56. Epub 2009 Jun 25. PMID:19556245 doi:M109.014498
  8. Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, Wu J, Lill JR, Zha J. The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol. 2009 Mar;29(5):1176-88. doi: 10.1128/MCB.01599-08. Epub 2008 Dec, 22. PMID:19103755 doi:10.1128/MCB.01599-08
  9. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem. 2010 Feb 12;285(7):4268-72. doi: 10.1074/jbc.C109.087981. Epub 2009 , Dec 14. PMID:20018852 doi:10.1074/jbc.C109.087981
  10. Han Z, Guo L, Wang H, Shen Y, Deng XW, Chai J. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol Cell. 2006 Apr 7;22(1):137-44. PMID:16600877 doi:10.1016/j.molcel.2006.03.018
  11. Couture JF, Collazo E, Trievel RC. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol. 2006 Aug;13(8):698-703. Epub 2006 Jul 9. PMID:16829960 doi:10.1038/nsmb1116
  12. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem. 2009 Sep 4;284(36):24242-56. Epub 2009 Jun 25. PMID:19556245 doi:M109.014498
  13. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem. 2009 Sep 4;284(36):24242-56. Epub 2009 Jun 25. PMID:19556245 doi:M109.014498
  14. Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, Seaman M, Ma D. A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. J Cell Biol. 2009 Aug 10;186(3):343-53. doi: 10.1083/jcb.200902146. Epub 2009 Aug, 3. PMID:19651892 doi:http://dx.doi.org/10.1083/jcb.200902146
  15. Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell. 2011 Feb 18;144(4):513-25. doi: 10.1016/j.cell.2011.01.020. PMID:21335234 doi:http://dx.doi.org/10.1016/j.cell.2011.01.020
  16. Park SH, Ayoub A, Lee YT, Xu J, Kim H, Zheng W, Zhang B, Sha L, An S, Zhang Y, Cianfrocco MA, Su M, Dou Y, Cho US. Cryo-EM structure of the human MLL1 core complex bound to the nucleosome. Nat Commun. 2019 Dec 5;10(1):5540. doi: 10.1038/s41467-019-13550-2. PMID:31804488 doi:http://dx.doi.org/10.1038/s41467-019-13550-2

6pwv, resolution 6.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA