Sandbox ggc16
2PQ8 Structure Myst Histone Acetyltransferase2PQ8 Structure Myst Histone Acetyltransferase
MYST Histone Acetyltransferases (HAT), a diverse family of proteins responsible for a variety of functions in eukaryotes from yeast to humans[1]. These particular histone acetyltransferases are part of the MYST family because of their structure which includes and . Part of the Myst Family, this histone modifier adds and removes a variety of chemical moieties to histone residues. Such modifications on a single or on several neighboring nucleosomes combine to produce a specific effect on the local chromatin structure. You may include any references to papers as in: the use of JSmol in Proteopedia [2] or to the article describing Jmol [3] to the rescue.[4],[5] FunctionHighly conserved in eukaryotes, their key roles in post-translation modification of histones. Profound effect on chromatin structure in eukaryotes. Composed of an Acetyl-CoA binding motif and a zinc finger. Diseaseresidues of p53 acetylated by HATs may be located in variable sites, which leads to elevation of p53 DNA binding or loss of its transcriptional activity. It has been demonstrated that mutation of the C-terminal site of p53, where acetylation occurs, prompts comprehensively the loss of p53-dependent cyclin-dependent kinase inhibitor p21 transcription [49,50]. Acetylation of signal mediators may be prominent in subsequent stages in cancer progression. RelevanceStructural highlightsThe binding site for this structure , which is involved in the transfer of an acetyl group from acetyl-coA to the amine group of a lysine residue. The zinc finger region of this structure is involved in the acetyltransferase activity and chromatin binding of the histone.
|
|
ReferencesReferences
- ↑ Chen CJ, Deng Z, Kim AY, Blobel GA, Lieberman PM. Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol. 2001 Jan;21(2):476-87. doi: 10.1128/MCB.21.2.476-487.2001. PMID:11134336 doi:http://dx.doi.org/10.1128/MCB.21.2.476-487.2001
- ↑ McCullough CE, Marmorstein R. Molecular Basis for Histone Acetyltransferase Regulation by Binding Partners, Associated Domains, and Autoacetylation. ACS Chem Biol. 2016 Mar 18;11(3):632-42. doi: 10.1021/acschembio.5b00841. Epub, 2015 Dec 2. PMID:26555232 doi:http://dx.doi.org/10.1021/acschembio.5b00841
- ↑ Chen CJ, Deng Z, Kim AY, Blobel GA, Lieberman PM. Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol. 2001 Jan;21(2):476-87. doi: 10.1128/MCB.21.2.476-487.2001. PMID:11134336 doi:http://dx.doi.org/10.1128/MCB.21.2.476-487.2001
- ↑ Grant PA, Berger SL. Histone acetyltransferase complexes. Semin Cell Dev Biol. 1999 Apr;10(2):169-77. doi: 10.1006/scdb.1999.0298. PMID:10441070 doi:http://dx.doi.org/10.1006/scdb.1999.0298
- ↑ Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell. 2000 Oct 13;103(2):263-71. doi: 10.1016/s0092-8674(00)00118-5. PMID:11057899 doi:http://dx.doi.org/10.1016/s0092-8674(00)00118-5