Phospholipase A2
FunctionPhospholipase A2 (PLA2) is an enzyme which releases fatty acids from glycerol. It is found in mammals and in snake venoms[1]. PLA2 releases arachidonic acid from membranes causing inflammation and pain. The PLA2 contains many isozymes which are ordered by groups and named accordingly, ie., group I is PLA2G1.
RelevancePLA2 serve as pharmacological targets for therapeutical treatment of diseases like atherosclerosis, immune disorders, cardiovascular diseases and cancer[8]. Reduced Lp-PLA2 activity is observed in patients with severe sepsis. There is association between the level of Lp-PLA2 in plasma and the risk of future cardiovascular events[9]. Diclofenac binding to Phospholipase A2[10]Abstract from Pubmed Type IIA secretory phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of the sn-2 ester bond of glycerophospholipids to release fatty acids and lysophospholipids. In order to elucidate the role of PLA2 in inflammatory disorders and to determine the mode of binding of non-steroidal anti-inflammatory drugs (NSAIDs) to PLA2, the detailed three-dimensional structure of a complex formed between a group IIA PLA2 from Daboia russelli pulchella and 2-[(2,6-dichlorophenyl)amino]benzeneacetic acid (diclofenac) has been determined. The preformed complex was crystallized by equilibrating the protein solution against a mixture of 0.20 M ammonium sulfate and 30% PEG 4000. The crystals belong to space group P4(3), with unit-cell parameters a = b = 53.0, c = 48.4 A. The structure was solved by the molecular-replacement method and refined to R(cryst) and R(free) factors of 0.192 and 0.211, respectively, using reflections to 2.7 A resolution. The structure showed that diclofenac occupies a very favourable position in the centre of the substrate-binding hydrophobic channel that allows a number of intermolecular interactions. The binding mode of diclofenac involved crucial interactions with important residues for substrate recognition such as Asp49, His48 and Gly30. In addition, it included three new interactions involving its Cl atoms with Phe5, Ala18 and Tyr22. It also showed an extensive network of hydrophobic interactions involving almost all of the residues of the substrate-binding hydrophobic channel. The binding affinity of diclofenac was determined using surface plasmon resonance, which gave an equilibrium constant of 4.8 +/- 0.2 x 10(-8) M. The shows three mail helices in phospholipase A2. The are His 48, Asp 49, Tyr 52 and Glu 99 in the structure. Diclofenac makes several with the substrate binding site of enzyme. ligand binding is shown in model of the complex. Crystal structure of porcine pancreatic phospholipase A2 in complex with 2-methoxycyclohexa-2-5-diene-1,4-dione
possesses anti-inflammatory activity. The binding of curcumin with PLA2 was studied using X-ray crystallography. Since the electron density found in the active site did not match with curcumin, (the photo-degraded product of curcumin) in the unexplained electron density. To understand the , molecular docking studies was carried out. with respect to the ligand position and identified that of PLA2 with a binding energy -16.81 Kcal/mol. The binding mode is in such a manner that it can prevent the entry of substrate to the hydrophobic active site. These studies indicate that curcumin can be act as an inhibitor to PLA2. |
|
3D Structures of Phospholipase A23D Structures of Phospholipase A2
Updated on 13-November-2019
- Phospholipase A2 group V
- 4rfp – PLA2 – chinese green tree viper
- Human phospholipase A2 group X
- Human phospholipase A2 group XV
- Human phospholipase A2 group XVI
- Phospholipase A2 group XIII
- 4aup – PLA13 – whitish truffle
- Phospholipase A2 +inhibitor
- 3o4m, 3hsw – PLA2+inhibitor
- 2azy, 2azz, 2b00, 2b01, 2b03, 2b04 – pPLA2+cholate derivative
- 1y6o, 1fx9, 1fxf – pPLA2+MJ33
- 1l8s – pPLA2+LPC-ether
- 5p2p – pPLA2+substrate analog
- 3nju – PLA2 group I+4-methoxy-benzoic acid – Andaman cobra
- 2wq5 – PLA2+minocyclin – Indian cobra
- 1oxl – IcPLA2+indole
- 3h1x, 3fo7 – IvPLA2+indomethacin
- 3fg5 – IvPLA2+pentapeptide+ajmaline
- 3cbi – IvPLA2+anisic acid+ajmaline
- 2qu9 – IvPLA2+eugenol
- 2otf – IvPLA2+atenolol
- 1zwp - IvPLA2+nimesulide
- 1th6 - IvPLA2+atropine
- 1td7 - IvPLA2+niflumic acid
- 1tgm - IvPLA2+aspirin
- 2wg9 – rPLA2+octanoic acid
- 1oxr – NsPLA2+aspirin
- 1bk9 – AhPLA2+PBPB
- 1fdk – bPLA2+MJ33
- 1mkv – bPLA2+transition state analog
- 1o2e – bPLA2 (mutant)+anisic acid
- 2b96 - bPLA2+benzoic acid derivative
- 3bp2 – bPLA2+pyruvic acid
- 1pob - NnPLA2+transition state analog
- 1poc - PLA2+transition state analog – Honey bee
- 1db4, 1db5, 1dcy – hPLA2+indole
- 1poe – hPLA2+phosphonyl inhibitor
- 1fv0 – DrPLA2+aristolochic acid
- 1sv3 - DrPLA2+benzoic acid derivative
- 1tp2, 2pws, 2q1p – DrPLA2+fatty acid
- 1sv9, 1sxk, 1zyx, 2b17, 2qvd – DrPLA2+anti-inflammatory agent
- 1kpm – DrPLA2+vitamin E
- 1oyf – DrPLA2+venom-6 methyl-heptanol
- 1q7a – DrPLA2+oxyphenabutazone
- 1y38 – DrPLA2+glycerophosphate
- 1zr8 – DrPLA2+ajmaline
- 2arm – DrPLA2+atropine
- 2dpz – DrPLA2 +hydroxyphenyl acetamide
- 2oli, 2oth, 2oyf – DrPLA2+indole derivative
- 2oub – DrPLA2+atenolol
- 4qem – DrPLA2 + coumaric acid
- 4qer – DrPLA2 + resveratrol
- 4qf7 – DrPLA2 + corticosterone
- 4qf8 – DrPLA2 + spermidine
- 4qgd – DrPLA2 + gramine derivative
- 4qmc – DrPLA2 + biotin derivative
- 2pmj – DrPLA2+benzopyrone
- 2zbh – DrPLA2+bavachalcone
- 4eix - DrPLA2+indomethacin + nimesulide
- 1po8, 1tc8 – kPLA2+fatty acid
- 1xxs – PLA2+fatty acid – Bothrops moojeni
- 2qhd – EcPLA2+fatty acid
- 3bjw – EcPLA2+suramin
- 1y4l – PLA2+suramin – Bothrops asper
- 3o4m, 3hsw – PLA2+inhibitor
- Phospholipase A2 +polypeptide
- Lp-PLA2
- Lp-PLA2 binary complexes
- 3dt6 - bLP-PLA2 α subunit (mutant) + paraoxon
- 3dt8 - bLP-PLA2 α subunit (mutant) + sarin
- 3dt9 - bLP-PLA2 α subunit (mutant) + soman
- 3d5e - hLP-PLA2 residues 47-429 + paraoxon
- 3f96 - hLP-PLA2 residues 47-429 + sarin
- 3f97 - hLP-PLA2 residues 47-429 + soman
- 3f98 - hLP-PLA2 residues 47-429 + tabun
- 3f9c - hLP-PLA2 residues 47-429 + DFP
- 5i8p, 5i9i, 5jad, 5jah, 5jal, 5jan, 5jao, 5jap, 5jar, 5jas, 5jat, 5jau, 5lp1, 5lz2, 5lz8, 5lz9 - hLP-PLA2 residues 47-429 + inhibitor
- 5lyy, 5lz4, 5lz5, 5lz7 - hLP-PLA2 residues 47-429 (mutant) + inhibitor
- 3dt6 - bLP-PLA2 α subunit (mutant) + paraoxon
- Bothrops toxins
- Viperotoxin
- 1oqs – DrRV4/RV7
- cPhospholipase A2
- Pro-Phospholipase A2
ReferencesReferences
- ↑ Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057-60. PMID:8175726
- ↑ Leitinger N, Watson AD, Hama SY, Ivandic B, Qiao JH, Huber J, Faull KF, Grass DS, Navab M, Fogelman AM, de Beer FC, Lusis AJ, Berliner JA. Role of group II secretory phospholipase A2 in atherosclerosis: 2. Potential involvement of biologically active oxidized phospholipids. Arterioscler Thromb Vasc Biol. 1999 May;19(5):1291-8. PMID:10323782
- ↑ Lapointe S, Brkovic A, Cloutier I, Tanguay JF, Arm JP, Sirois MG. Group V secreted phospholipase A2 contributes to LPS-induced leukocyte recruitment. J Cell Physiol. 2010 Jul;224(1):127-34. doi: 10.1002/jcp.22106. PMID:20232296 doi:http://dx.doi.org/10.1002/jcp.22106
- ↑ Hallstrand TS, Lai Y, Hooper KA, Oslund RC, Altemeier WA, Matute-Bello G, Gelb MH. Endogenous secreted phospholipase A2 group X regulates cysteinyl leukotrienes synthesis by human eosinophils. J Allergy Clin Immunol. 2016 Jan;137(1):268-77.e8. doi:, 10.1016/j.jaci.2015.05.026. Epub 2015 Jun 30. PMID:26139511 doi:http://dx.doi.org/10.1016/j.jaci.2015.05.026
- ↑ Platt RW, Brookhart MA, Cole SR, Westreich D, Schisterman EF. Reply to taguri and matsuyama. Stat Med. 2013 Sep 10;32(20):3592-3. doi: 10.1002/sim.5805. PMID:23943550 doi:http://dx.doi.org/10.1002/sim.5805
- ↑ Duncan RE, Sarkadi-Nagy E, Jaworski K, Ahmadian M, Sul HS. Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J Biol Chem. 2008 Sep 12;283(37):25428-36. doi: 10.1074/jbc.M804146200. Epub 2008, Jul 9. PMID:18614531 doi:http://dx.doi.org/10.1074/jbc.M804146200
- ↑ Tjoelker LW, Wilder C, Eberhardt C, Stafforini DM, Dietsch G, Schimpf B, Hooper S, Le Trong H, Cousens LS, Zimmerman GA, Yamada Y, McIntyre TM, Prescott SM, Gray PW. Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature. 1995 Apr 6;374(6522):549-53. PMID:7700381 doi:http://dx.doi.org/10.1038/374549a0
- ↑ Quach ND, Arnold RD, Cummings BS. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol. 2014 Aug 15;90(4):338-48. doi: 10.1016/j.bcp.2014.05.022. Epub, 2014 Jun 4. PMID:24907600 doi:http://dx.doi.org/10.1016/j.bcp.2014.05.022
- ↑ Tellis CC, Tselepis AD. The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. Biochim Biophys Acta. 2009 May;1791(5):327-38. doi: 10.1016/j.bbalip.2009.02.015. PMID:19272461 doi:http://dx.doi.org/10.1016/j.bbalip.2009.02.015
- ↑ Wang P, Li Y, Shao Q, Zhou W, Wang K. Targeting human secretory phospholipase A2 with designed peptide inhibitors for inflammatory therapy. J Drug Target. 2015 Feb;23(2):140-6. doi: 10.3109/1061186X.2014.959019. Epub 2014, Sep 19. PMID:25237841 doi:http://dx.doi.org/10.3109/1061186X.2014.959019
- ↑ Crystal structure of porcine pancreatic phospholipase a2 in complex with 2-methoxycyclohexa-2-5-diene-1,4-dione. Dileep KV, Tintu I, Mandal PK, Karthe P, Haridas M, Sadasivan C. Frontiers In Life Sci. (2012) doi:http://dx.doi.org/10.1080/21553769.2012.689262