Reduced SoxAX complex from Rhodovulum sulfidophilumReduced SoxAX complex from Rhodovulum sulfidophilum

Structural highlights

1h32 is a 2 chain structure with sequence from Rhodovulum sulfidophilum. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[SOXA_RHOSU] C-type diheme cytochrome, which is part of the SoxAX cytochrome complex involved in sulfur oxidation. The SoxAX complex catalyzes the formation of a heterodisulfide bond between the conserved cysteine residue on a sulfur carrier SoxYZ complex subunit SoxY and thiosulfate or other inorganic sulfur substrates. This leads to the liberation of two electrons, which may be transferred from the SoxAX complex to another cytochrome c and which then may be used for reductive CO(2) fixation.[1] [2] [3] [4]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Reduced inorganic sulfur compounds are utilized by many bacteria as electron donors to photosynthetic or respiratory electron transport chains. This metabolism is a key component of the biogeochemical sulfur cycle. The SoxAX protein is a heterodimeric c-type cytochrome involved in thiosulfate oxidation. The crystal structures of SoxAX from the photosynthetic bacterium Rhodovulum sulfidophilum have been solved at 1.75 A resolution in the oxidized state and at 1.5 A resolution in the dithionite-reduced state, providing the first structural insights into the enzymatic oxidation of thiosulfate. The SoxAX active site contains a haem with unprecedented cysteine persulfide (cysteine sulfane) coordination. This unusual post-translational modification is also seen in sulfurtransferases such as rhodanese. Intriguingly, this enzyme shares further active site characteristics with SoxAX such as an adjacent conserved arginine residue and a strongly positive electrostatic potential. These similarities have allowed us to suggest a catalytic mechanism for enzymatic thiosulfate oxidation. The atomic coordinates and experimental structure factors have been deposited in the PDB with the accession codes 1H31, 1H32 and 1H33.

Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme.,Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM EMBO J. 2002 Nov 1;21(21):5599-610. PMID:12411478[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Cheesman MR, Little PJ, Berks BC. Novel heme ligation in a c-type cytochrome involved in thiosulfate oxidation: EPR and MCD of SoxAX from Rhodovulum sulfidophilum. Biochemistry. 2001 Sep 4;40(35):10562-9. PMID:11523998
  2. Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP, Berks BC. Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol. 2001 Oct;183(20):6107-18. PMID:11567011 doi:http://dx.doi.org/10.1128/JB.183.20.6107-6118.2001
  3. Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM. Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J. 2002 Nov 1;21(21):5599-610. PMID:12411478
  4. Bradley JM, Marritt SJ, Kihlken MA, Haynes K, Hemmings AM, Berks BC, Cheesman MR, Butt JN. Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX. J Biol Chem. 2012 Nov 23;287(48):40350-9. doi: 10.1074/jbc.M112.396192. Epub 2012, Oct 11. PMID:23060437 doi:http://dx.doi.org/10.1074/jbc.M112.396192
  5. Bamford VA, Bruno S, Rasmussen T, Appia-Ayme C, Cheesman MR, Berks BC, Hemmings AM. Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J. 2002 Nov 1;21(21):5599-610. PMID:12411478

1h32, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA