[R1AB_CVHSA] The replicase polyprotein of coronaviruses is a multifunctional protein: it contains the activities necessary for the transcription of negative stranded RNA, leader RNA, subgenomic mRNAs and progeny virion RNA as well as proteinases responsible for the cleavage of the polyprotein into functional products (By similarity).[1][2][3] The papain-like proteinase (PL-PRO) is responsible for the cleavages located at the N-terminus of replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF-3.[4][5][6] The main proteinase 3CL-PRO is responsible for the majority of cleavages as it cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Inhibited by the substrate-analog Cbz-Val-Asn-Ser-Thr-Leu-Gln-CMK (By similarity). Also contains an ADP-ribose-1-phosphate (ADRP)-binding function.[7][8][9] The helicase which contains a zinc finger structure displays RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Its ATPase activity is strongly stimulated by poly(U), poly(dT), poly(C), poly(dA), but not by poly(G). Activity of helicase is dependent on magnesium.[10][11][12] The exoribonuclease acts on both ssRNA and dsRNA in a 3' to 5' direction.[13][14][15] Nsp7-nsp8 hexadecamer may possibly confer processivity to the polymerase, maybe by binding to dsRNA or by producing primers utilized by the latter.[16][17][18] Nsp9 is a ssRNA-binding protein.[19][20][21] NendoU is a Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond.[22][23][24]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The 3C-like protease (3CLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV) cleaves 11 sites in the polyproteins, including its own N- and C-terminal autoprocessing sites, by recognizing P4-P1 and P1'. In this study, we determined the crystal structure of 3CLpro with the C-terminal prosequence and the catalytic-site C145A mutation, in which the enzyme binds the C-terminal prosequence of another molecule. Surprisingly, Phe at the P3' position [Phe(P3')] is snugly accommodated in the S3' pocket. Mutations of Phe(P3') impaired the C-terminal autoprocessing, but did not affect N-terminal autoprocessing. This difference was ascribed to the P2 residue, Phe(P2) and Leu(P2), in the C- and N-terminal sites, as follows. The S3' subsite is formed by Phe(P2)-induced conformational changes of 3CLpro and the direct involvement of Phe(P2) itself. In contrast, the N-terminal prosequence with Leu(P2) does not cause such conformational changes for the S3' subsite formation. In fact, the mutation of Phe(P2) to Leu in the C-terminal autoprocessing site abolishes the dependence on Phe(P3'). These mechanisms explain why Phe is required at the P3' position when the P2 position is occupied by Phe rather than Leu, which reveals a type of subsite cooperativity. Moreover, the peptide consisting of P4-P1 with Leu(P2) inhibits protease activity, whereas that with Phe(P2) exhibits a much smaller inhibitory effect, because Phe(P3') is missing. Thus, this subsite cooperativity likely exists to avoid the autoinhibition of the enzyme by its mature C-terminal sequence, and to retain the efficient C-terminal autoprocessing by the use of Phe(P2).
SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity.,Muramatsu T, Takemoto C, Kim YT, Wang H, Nishii W, Terada T, Shirouzu M, Yokoyama S Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12997-13002. Epub 2016 Oct 31. PMID:27799534[25]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
↑Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
↑Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
↑Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
↑Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
↑Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
↑Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
↑Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
↑Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
↑Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
↑Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
↑Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
↑Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
↑Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
↑Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
↑Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
↑Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
↑Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
↑Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
↑Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
↑Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
↑Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
↑Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
↑Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
↑Muramatsu T, Takemoto C, Kim YT, Wang H, Nishii W, Terada T, Shirouzu M, Yokoyama S. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12997-13002. Epub 2016 Oct 31. PMID:27799534 doi:http://dx.doi.org/10.1073/pnas.1601327113