1nn2
THREE-DIMENSIONAL STRUCTURE OF THE NEURAMINIDASE OF INFLUENZA VIRUS A(SLASH)TOKYO(SLASH)3(SLASH)67 AT 2.2 ANGSTROMS RESOLUTIONTHREE-DIMENSIONAL STRUCTURE OF THE NEURAMINIDASE OF INFLUENZA VIRUS A(SLASH)TOKYO(SLASH)3(SLASH)67 AT 2.2 ANGSTROMS RESOLUTION
Structural highlights
Function[NRAM_I67A0] Catalyzes the removal of terminal sialic acid residues from viral and cellular glycoconjugates. Cleaves off the terminal sialic acids on the glycosylated HA during virus budding to facilitate virus release. Additionally helps virus spread through the circulation by further removing sialic acids from the cell surface. These cleavages prevent self-aggregation and ensure the efficient spread of the progeny virus from cell to cell. Otherwise, infection would be limited to one round of replication. Described as a receptor-destroying enzyme because it cleaves a terminal sialic acid from the cellular receptors. May facilitate viral invasion of the upper airways by cleaving the sialic acid moities on the mucin of the airway epithelial cells. Likely to plays a role in the budding process through its association with lipid rafts during intracellular transport. May additionally display a raft-association independent effect on budding. Plays a role in the determination of host range restriction on replication and virulence. Sialidase activity in late endosome/lysosome traffic seems to enhance virus replication. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAn atomic model of the tetrameric surface glycoprotein neuraminidase of influenza virus A/Tokyo/3/67 has been built and refined based on X-ray diffraction data at 2.2 A resolution. The crystallographic residual is 0.21 for data between 6 and 2.2 A resolution and the r.m.s. deviations from ideal geometry are 0.02 A for bond lengths and 3.9 degrees for bond angles. The model includes amino acid residues 83 to 469, four oligosaccharide structures N-linked at asparagine residues 86, 146, 200 and 234, a single putative Ca2+ ion site, and 85 water molecules. One of the oligosaccharides participates in a novel crystal contact. The folding pattern is a beta-sheet propeller as described earlier and details of the intramolecular interactions between the six beta-sheets are presented. Strain-invariant residues are clustered around the propeller axis on the upper surface of the molecule where they line the wall of a cavity into which sialic has been observed to bind. Strain-variable residues implicated in binding to antibodies surround this site. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution.,Varghese JN, Colman PM J Mol Biol. 1991 Sep 20;221(2):473-86. PMID:1920428[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See Also
References |
|