6opc

From Proteopedia
Revision as of 08:50, 10 July 2019 by OCA (talk | contribs)
Jump to navigation Jump to search

Cdc48 Hexamer in a complex with substrate and Shp1(Ubx Domain)Cdc48 Hexamer in a complex with substrate and Shp1(Ubx Domain)

Structural highlights

6opc is a 8 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
NonStd Res:
Activity:Vesicle-fusing ATPase, with EC number 3.6.4.6
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[CDC48_YEAST] ATP-dependent chaperone which probably uses the energy provided by ATP hydrolysis to generate mechanical force to unfold substrate proteins, disassemble protein complexes, and disaggregate protein aggregates (PubMed:21454554). By recruiting and promoting the degradation of ubiquitinated proteins, plays a role in the ubiquitin fusion degradation (UFD) pathway (PubMed:16428438). Has a role in the endoplasmic reticulum-associated degradation (ERAD) pathway which mediates the cytoplasmic elimination of misfolded proteins exported from the ER (PubMed:11813000, PubMed:11740563, PubMed:11847109, PubMed:21148305). Required for the proteasome-dependent processing/activation of MGA2 and SPT23 transcription factors leading to the subsequent expression of OLE1 (PubMed:11847109, PubMed:11733065). Has an additional role in the turnover of OLE1 where it targets ubiquitinated OLE1 and other proteins to the ERAD (PubMed:11847109). Regulates ubiquitin-mediated mitochondria protein degradation (PubMed:21070972, PubMed:27044889). Involved in spindle disassembly probably by promoting the degradation of spindle assembly factors ASE1 and CDC5 at the end of mitosis (PubMed:14636562). Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:23178123, PubMed:24261871). CDC48 may provide the mechanical force that dislodges the polyubiquitinated nascent peptides from the exit channel (PubMed:23178123, PubMed:24261871). Required for ribophagy, a process which relocalizes ribosomal particles into the vacuole for degradation in response to starvation (PubMed:20508643).[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [UBX1_YEAST] Involved in CDC48-dependent protein degradation through the ubiquitin/proteasome pathway. Direct or indirect positive regulator of GLC7 activity.[14]

Publication Abstract from PubMed

The cellular machine Cdc48 functions in multiple biological pathways by segregating its protein substrates from a variety of stable environments such as organelles or multi-subunit complexes. Despite extensive studies, the mechanism of Cdc48 has remained obscure, and its reported structures are inconsistent with models of substrate translocation proposed for other AAA+ ATPases. Here, we report a 3.7 A resolution structure of Cdc48 in complex with an adaptor protein and a native substrate. Cdc48 engages substrate by adopting a helical configuration of substrate-binding residues that extends through the central pore of both of the ATPase rings. These findings indicate a unified hand-over-hand mechanism of protein translocation by Cdc48 and other AAA+ ATPases.

Structure of the Cdc48 segregase in the act of unfolding an authentic substrate.,Cooney I, Han H, Stewart MG, Carson RH, Hansen DT, Iwasa JH, Price JC, Hill CP, Shen PS Science. 2019 Jun 27. pii: science.aax0486. doi: 10.1126/science.aax0486. PMID:31249134[15]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, Jentsch S. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell. 2001 Nov 30;107(5):667-77. PMID:11733065
  2. Ye Y, Meyer HH, Rapoport TA. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature. 2001 Dec 6;414(6864):652-6. PMID:11740563 doi:http://dx.doi.org/10.1038/414652a
  3. Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol. 2002 Feb;4(2):134-9. PMID:11813000 doi:http://dx.doi.org/10.1038/ncb746
  4. Braun S, Matuschewski K, Rape M, Thoms S, Jentsch S. Role of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 2002 Feb 15;21(4):615-21. PMID:11847109
  5. Cao K, Nakajima R, Meyer HH, Zheng Y. The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell. 2003 Oct 31;115(3):355-67. PMID:14636562
  6. Mullally JE, Chernova T, Wilkinson KD. Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain. Mol Cell Biol. 2006 Feb;26(3):822-30. doi: 10.1128/MCB.26.3.822-830.2006. PMID:16428438 doi:http://dx.doi.org/10.1128/MCB.26.3.822-830.2006
  7. Ossareh-Nazari B, Bonizec M, Cohen M, Dokudovskaya S, Delalande F, Schaeffer C, Van Dorsselaer A, Dargemont C. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep. 2010 Jul;11(7):548-54. doi: 10.1038/embor.2010.74. Epub 2010 May 28. PMID:20508643 doi:http://dx.doi.org/10.1038/embor.2010.74
  8. Heo JM, Livnat-Levanon N, Taylor EB, Jones KT, Dephoure N, Ring J, Xie J, Brodsky JL, Madeo F, Gygi SP, Ashrafi K, Glickman MH, Rutter J. A stress-responsive system for mitochondrial protein degradation. Mol Cell. 2010 Nov 12;40(3):465-80. doi: 10.1016/j.molcel.2010.10.021. PMID:21070972 doi:http://dx.doi.org/10.1016/j.molcel.2010.10.021
  9. Tran JR, Tomsic LR, Brodsky JL. A Cdc48p-associated factor modulates endoplasmic reticulum-associated degradation, cell stress, and ubiquitinated protein homeostasis. J Biol Chem. 2011 Feb 18;286(7):5744-55. doi: 10.1074/jbc.M110.179259. Epub 2010 , Dec 9. PMID:21148305 doi:http://dx.doi.org/10.1074/jbc.M110.179259
  10. Nishikori S, Esaki M, Yamanaka K, Sugimoto S, Ogura T. Positive cooperativity of the p97 AAA ATPase is critical for essential functions. J Biol Chem. 2011 May 6;286(18):15815-20. doi: 10.1074/jbc.M110.201400. Epub 2011, Mar 18. PMID:21454554 doi:http://dx.doi.org/10.1074/jbc.M110.201400
  11. Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell. 2012 Nov 21;151(5):1042-54. doi: 10.1016/j.cell.2012.10.044. PMID:23178123 doi:http://dx.doi.org/10.1016/j.cell.2012.10.044
  12. Matsuda R, Ikeuchi K, Nomura S, Inada T. Protein quality control systems associated with no-go and nonstop mRNA surveillance in yeast. Genes Cells. 2014 Jan;19(1):1-12. doi: 10.1111/gtc.12106. Epub 2013 Nov 21. PMID:24261871 doi:http://dx.doi.org/10.1111/gtc.12106
  13. Wu X, Li L, Jiang H. Doa1 targets ubiquitinated substrates for mitochondria-associated degradation. J Cell Biol. 2016 Apr 11;213(1):49-63. doi: 10.1083/jcb.201510098. Epub 2016 Apr , 4. PMID:27044889 doi:http://dx.doi.org/10.1083/jcb.201510098
  14. Schuberth C, Richly H, Rumpf S, Buchberger A. Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation. EMBO Rep. 2004 Aug;5(8):818-24. Epub 2004 Jul 16. PMID:15258615 doi:http://dx.doi.org/10.1038/sj.embor.7400203
  15. Cooney I, Han H, Stewart MG, Carson RH, Hansen DT, Iwasa JH, Price JC, Hill CP, Shen PS. Structure of the Cdc48 segregase in the act of unfolding an authentic substrate. Science. 2019 Jun 27. pii: science.aax0486. doi: 10.1126/science.aax0486. PMID:31249134 doi:http://dx.doi.org/10.1126/science.aax0486

6opc, resolution 3.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA