Crystal Structure of the PDE4D Catalytic Domain and UCR2 Regulatory Helix with T-48Crystal Structure of the PDE4D Catalytic Domain and UCR2 Regulatory Helix with T-48

Structural highlights

6njh is a 4 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Gene:PDE4D, DPDE3 (HUMAN)
Activity:3',5'-cyclic-AMP phosphodiesterase, with EC number 3.1.4.53
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[PDE4D_HUMAN] Note=Genetic variations in PDE4D might be associated with susceptibility to stroke. PubMed:17006457 states that association with stroke has to be considered with caution. Defects in PDE4D are the cause of acrodysostosis type 2, with or without hormone resistance (ACRDYS2) [MIM:614613]. ACRDYS2 is a pleiotropic disorder characterized by skeletal, endocrine, and neurological abnormalities. Skeletal features include brachycephaly, midface hypoplasia with a small upturned nose, brachydactyly, and lumbar spinal stenosis. Endocrine abnormalities include hypothyroidism and hypogonadism in males and irregular menses in females. Developmental disability is a common finding but is variable in severity and can be associated with significant behavioral problems.[1]

Function

[PDE4D_HUMAN] Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes.[2] [3]

Publication Abstract from PubMed

Novel pyridine- and pyrimidine-based allosteric inhibitors are reported that achieve PDE4D subtype selectivity through recognition of a single amino acid difference on a key regulatory domain, known as UCR2, that opens and closes over the catalytic site for cAMP hydrolysis. The design and optimization of lead compounds was based on iterative analysis of X-ray crystal structures combined with metabolite identification. Selectivity for the activated, dimeric form of PDE4D provided potent memory enhancing effects in a mouse model of novel object recognition with improved tolerability and reduced vascular toxicity over earlier PDE4 inhibitors that lack subtype selectivity. The lead compound, 28 (BPN14770), has entered midstage, human phase 2 clinical trials for the treatment of Fragile X Syndrome.

Design and Synthesis of Selective Phosphodiesterase 4D (PDE4D) Allosteric Inhibitors for the Treatment of Fragile X Syndrome and Other Brain Disorders.,Gurney ME, Nugent RA, Mo X, Sindac JA, Hagen TJ, Fox D 3rd, O'Donnell JM, Zhang C, Xu Y, Zhang HT, Groppi VE, Bailie M, White RE, Romero DL, Vellekoop AS, Walker JR, Surman MD, Zhu L, Campbell RF J Med Chem. 2019 Apr 23. doi: 10.1021/acs.jmedchem.9b00193. PMID:31013090[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Michot C, Le Goff C, Goldenberg A, Abhyankar A, Klein C, Kinning E, Guerrot AM, Flahaut P, Duncombe A, Baujat G, Lyonnet S, Thalassinos C, Nitschke P, Casanova JL, Le Merrer M, Munnich A, Cormier-Daire V. Exome sequencing identifies PDE4D mutations as another cause of acrodysostosis. Am J Hum Genet. 2012 Apr 6;90(4):740-5. doi: 10.1016/j.ajhg.2012.03.003. Epub, 2012 Mar 29. PMID:22464250 doi:10.1016/j.ajhg.2012.03.003
  2. Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell. 2004 Jul 23;15(2):279-86. PMID:15260978 doi:http://dx.doi.org/10.1016/j.molcel.2004.07.005
  3. Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure. 2004 Dec;12(12):2233-47. PMID:15576036 doi:http://dx.doi.org/10.1016/j.str.2004.10.004
  4. Gurney ME, Nugent RA, Mo X, Sindac JA, Hagen TJ, Fox D 3rd, O'Donnell JM, Zhang C, Xu Y, Zhang HT, Groppi VE, Bailie M, White RE, Romero DL, Vellekoop AS, Walker JR, Surman MD, Zhu L, Campbell RF. Design and Synthesis of Selective Phosphodiesterase 4D (PDE4D) Allosteric Inhibitors for the Treatment of Fragile X Syndrome and Other Brain Disorders. J Med Chem. 2019 Apr 23. doi: 10.1021/acs.jmedchem.9b00193. PMID:31013090 doi:http://dx.doi.org/10.1021/acs.jmedchem.9b00193

6njh, resolution 2.15Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA