Crystal Structure of cyanobacterial Photosystem IICrystal Structure of cyanobacterial Photosystem II

Structural highlights

4v62 is a 40 chain structure with sequence from Thermosynechococcus elongatus. This structure supersedes the now removed PDB entries 3bz1 and 3bz2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , , , , , , , , , , , , ,
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[PSBL_THEEB] Required for PSII activity (By similarity). [YCF12_THEEB] A core subunit of photosystem II (PSII).[HAMAP-Rule:MF_01329] [PSBB_THEEB] One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01495][1] [2] [3] [PSBA1_SYNEL] This is one of the two reaction center proteins of photosystem II (By similarity). [CY550_THEEB] Low-potential cytochrome c that plays a role in the oxygen-evolving complex of photosystem II. It is not essential for growth under normal conditions but is required under low CO(2) concentrations.[HAMAP-Rule:MF_01378] [PSBF_THEEB] This b-type cytochrome is tightly associated with the reaction center of photosystem II and possibly is part of the water-oxidation complex (By similarity).[HAMAP-Rule:MF_00643] [PSBC_THEEB] One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01496][4] [5] [6] [PSBJ_THEEB] This protein is a component of the reaction center of photosystem II (By similarity). [PSBZ_THEEB] Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. May also aid in binding of PsbK, Ycf12 and the oxygen-evolving complex to PSII, at least in vitro.[7] [PSBT_THEEB] Seems to play a role in the dimerization of PSII.[8] [PSBU_THEEB] Stabilizes the structure of photosystem II oxygen-evolving complex (OEC), the ion environment of oxygen evolution and protects the OEC against heat-induced inactivation (By similarity).[HAMAP-Rule:MF_00589] [PSBI_THEEB] This protein is a component of the reaction center of photosystem II.[HAMAP-Rule:MF_01316] [PSBK_THEEB] This protein is a component of the reaction center of photosystem II.[HAMAP-Rule:MF_00441] [PSBE_THEEB] This b-type cytochrome is tightly associated with the reaction center of photosystem II and possibly is part of the water-oxidation complex.[HAMAP-Rule:MF_00642]

Publication Abstract from PubMed

Photosystem II (PSII) is a large homodimeric protein-cofactor complex located in the photosynthetic thylakoid membrane that acts as light-driven water:plastoquinone oxidoreductase. The crystal structure of PSII from Thermosynechococcus elongatus at 2.9-A resolution allowed the unambiguous assignment of all 20 protein subunits and complete modeling of all 35 chlorophyll a molecules and 12 carotenoid molecules, 25 integral lipids and 1 chloride ion per monomer. The presence of a third plastoquinone Q(C) and a second plastoquinone-transfer channel, which were not observed before, suggests mechanisms for plastoquinol-plastoquinone exchange, and we calculated other possible water or dioxygen and proton channels. Putative oxygen positions obtained from a Xenon derivative indicate a role for lipids in oxygen diffusion to the cytoplasmic side of PSII. The chloride position suggests a role in proton-transfer reactions because it is bound through a putative water molecule to the Mn(4)Ca cluster at a distance of 6.5 A and is close to two possible proton channels.

Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride.,Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W Nat Struct Mol Biol. 2009 Mar;16(3):334-42. Epub 2009 Feb 15. PMID:19219048[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Broser M, Gabdulkhakov A, Kern J, Guskov A, Muh F, Saenger W, Zouni A. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-a resolution. J Biol Chem. 2010 Aug 20;285(34):26255-62. Epub 2010 Jun 17. PMID:20558739 doi:10.1074/jbc.M110.127589
  2. Broser M, Glockner C, Gabdulkhakov A, Guskov A, Buchta J, Kern J, Muh F, Dau H, Saenger W, Zouni A. Structural basis of cyanobacterial photosystem II Inhibition by the herbicide terbutryn. J Biol Chem. 2011 May 6;286(18):15964-72. Epub 2011 Mar 2. PMID:21367867 doi:http://dx.doi.org/10.1074/jbc.M110.215970
  3. Kern J, Tran R, Alonso-Mori R, Koroidov S, Echols N, Hattne J, Ibrahim M, Gul S, Laksmono H, Sierra RG, Gildea RJ, Han G, Hellmich J, Lassalle-Kaiser B, Chatterjee R, Brewster AS, Stan CA, Glockner C, Lampe A, DiFiore D, Milathianaki D, Fry AR, Seibert MM, Koglin JE, Gallo E, Uhlig J, Sokaras D, Weng TC, Zwart PH, Skinner DE, Bogan MJ, Messerschmidt M, Glatzel P, Williams GJ, Boutet S, Adams PD, Zouni A, Messinger J, Sauter NK, Bergmann U, Yano J, Yachandra VK. Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nat Commun. 2014 Jul 9;5:4371. doi: 10.1038/ncomms5371. PMID:25006873 doi:http://dx.doi.org/10.1038/ncomms5371
  4. Broser M, Gabdulkhakov A, Kern J, Guskov A, Muh F, Saenger W, Zouni A. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-a resolution. J Biol Chem. 2010 Aug 20;285(34):26255-62. Epub 2010 Jun 17. PMID:20558739 doi:10.1074/jbc.M110.127589
  5. Broser M, Glockner C, Gabdulkhakov A, Guskov A, Buchta J, Kern J, Muh F, Dau H, Saenger W, Zouni A. Structural basis of cyanobacterial photosystem II Inhibition by the herbicide terbutryn. J Biol Chem. 2011 May 6;286(18):15964-72. Epub 2011 Mar 2. PMID:21367867 doi:http://dx.doi.org/10.1074/jbc.M110.215970
  6. Kern J, Tran R, Alonso-Mori R, Koroidov S, Echols N, Hattne J, Ibrahim M, Gul S, Laksmono H, Sierra RG, Gildea RJ, Han G, Hellmich J, Lassalle-Kaiser B, Chatterjee R, Brewster AS, Stan CA, Glockner C, Lampe A, DiFiore D, Milathianaki D, Fry AR, Seibert MM, Koglin JE, Gallo E, Uhlig J, Sokaras D, Weng TC, Zwart PH, Skinner DE, Bogan MJ, Messerschmidt M, Glatzel P, Williams GJ, Boutet S, Adams PD, Zouni A, Messinger J, Sauter NK, Bergmann U, Yano J, Yachandra VK. Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nat Commun. 2014 Jul 9;5:4371. doi: 10.1038/ncomms5371. PMID:25006873 doi:http://dx.doi.org/10.1038/ncomms5371
  7. Iwai M, Suzuki T, Dohmae N, Inoue Y, Ikeuchi M. Absence of the PsbZ subunit prevents association of PsbK and Ycf12 with the PSII complex in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Plant Cell Physiol. 2007 Dec;48(12):1758-63. Epub 2007 Oct 28. PMID:17967798 doi:pcm148
  8. Iwai M, Katoh H, Katayama M, Ikeuchi M. PSII-Tc protein plays an important role in dimerization of photosystem II. Plant Cell Physiol. 2004 Dec;45(12):1809-16. PMID:15653799 doi:45/12/1809
  9. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol. 2009 Mar;16(3):334-42. Epub 2009 Feb 15. PMID:19219048 doi:10.1038/nsmb.1559

4v62, resolution 2.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA