4v82
Crystal structure of cyanobacterial Photosystem II in complex with terbutrynCrystal structure of cyanobacterial Photosystem II in complex with terbutryn
Structural highlights
Function[PSBL_THEEB] Required for PSII activity (By similarity). [YCF12_THEEB] A core subunit of photosystem II (PSII).[HAMAP-Rule:MF_01329] [PSBA1_THEEB] This is one of the two reaction center proteins of photosystem II. [PSBX_THEEB] Involved in the binding and/or turnover of quinones at the Q(B) site of Photosystem II.[1] [CY550_THEEB] Low-potential cytochrome c that plays a role in the oxygen-evolving complex of photosystem II. It is not essential for growth under normal conditions but is required under low CO(2) concentrations.[HAMAP-Rule:MF_01378] [PSBO_THEEB] MSP binds to a putative Mn-binding protein and keeps 2 of the 4 Mn-atoms associated with PSII (By similarity). [PSBF_THEEB] This b-type cytochrome is tightly associated with the reaction center of photosystem II and possibly is part of the water-oxidation complex (By similarity).[HAMAP-Rule:MF_00643] [PSBJ_THEEB] This protein is a component of the reaction center of photosystem II (By similarity). [PSBZ_THEEB] Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. May also aid in binding of PsbK, Ycf12 and the oxygen-evolving complex to PSII, at least in vitro.[2] [PSBT_THEEB] Seems to play a role in the dimerization of PSII.[3] [PSBU_THEEB] Stabilizes the structure of photosystem II oxygen-evolving complex (OEC), the ion environment of oxygen evolution and protects the OEC against heat-induced inactivation (By similarity).[HAMAP-Rule:MF_00589] [PSBI_THEEB] This protein is a component of the reaction center of photosystem II.[HAMAP-Rule:MF_01316] [PSBK_THEEB] This protein is a component of the reaction center of photosystem II.[HAMAP-Rule:MF_00441] [PSBE_THEEB] This b-type cytochrome is tightly associated with the reaction center of photosystem II and possibly is part of the water-oxidation complex.[HAMAP-Rule:MF_00642] Publication Abstract from PubMedHerbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the Q(B) site in the D1 subunit and thus block the electron transfer from Q(A) to Q(B). Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3.2 A. The crystallized PSII core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The used herbicide terbutryn is found to bind via at least two hydrogen bonds to the Q(B) site similar to photosynthetic reaction centers in anoxygenic purple bacteria. Herbicide binding to PSII is also discussed regarding the influence on the redox potential of Q(A), which is known to affect photoinhibition. We further identified a second and novel chloride position close to the water-oxidizing complex and in the vicinity of the chloride ion reported earlier (Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol. 16, 334-342). This discovery is discussed in the context of proton transfer to the lumen. Structural basis of cyanobacterial photosystem II Inhibition by the herbicide terbutryn.,Broser M, Glockner C, Gabdulkhakov A, Guskov A, Buchta J, Kern J, Muh F, Dau H, Saenger W, Zouni A J Biol Chem. 2011 May 6;286(18):15964-72. Epub 2011 Mar 2. PMID:21367867[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|