4auq

From Proteopedia
Revision as of 12:39, 6 March 2019 by OCA (talk | contribs)
Jump to navigation Jump to search

Structure of BIRC7-UbcH5b-Ub complex.Structure of BIRC7-UbcH5b-Ub complex.

Structural highlights

4auq is a 6 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:Ubiquitin--protein ligase, with EC number 6.3.2.19
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[UB2D2_HUMAN] Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes 'Lys-48'-linked polyubiquitination. Mediates the selective degradation of short-lived and abnormal proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Mediates ubiquitination of PEX5 and autoubiquitination of STUB1 and TRAF6. Involved in the signal-induced conjugation and subsequent degradation of NFKBIA, FBXW2-mediated GCM1 ubiquitination and degradation, MDM2-dependent degradation of p53/TP53 and the activation of MAVS in the mitochondria by DDX58/RIG-I in response to viral infection. Essential for viral activation of IRF3.[1] [2] [3] [4] [5] [6] [7] [8] [UBC_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[9] [10] [BIRC7_HUMAN] Apoptotic regulator capable of exerting proapoptotic and anti-apoptotic activities and plays crucial roles in apoptosis, cell proliferation, and cell cycle control. Its anti-apoptotic activity is mediated through the inhibition of CASP3, CASP7 and CASP9, as well as by its E3 ubiquitin-protein ligase activity. As it is a weak caspase inhibitor, its anti-apoptotic activity is thought to be due to its ability to ubiquitinate DIABLO/SMAC targeting it for degradation thereby promoting cell survival. May contribute to caspase inhibition, by blocking the ability of DIABLO/SMAC to disrupt XIAP/BIRC4-caspase interactions. Protects against apoptosis induced by TNF or by chemical agents such as adriamycin, etoposide or staurosporine. Suppression of apoptosis is mediated by activation of MAPK8/JNK1, and possibly also of MAPK9/JNK2. This activation depends on TAB1 and NR2C2/TAK1. In vitro, inhibits CASP3 and proteolytic activation of pro-CASP9. Isoform 1 blocks staurosporine-induced apoptosis. Isoform 2 blocks etoposide-induced apoptosis. Isoform 2 protects against natural killer (NK) cell killing whereas isoform 1 augments killing.[11] [12] [13] [14]

Publication Abstract from PubMed

Certain RING ubiquitin ligases (E3s) dimerize to facilitate ubiquitin (Ub) transfer from ubiquitin-conjugating enzyme (E2) to substrate, but structural evidence on how this process promotes Ub transfer is lacking. Here we report the structure of the human dimeric RING domain from BIRC7 in complex with the E2 UbcH5B covalently linked to Ub (UbcH5B approximately Ub). The structure reveals extensive noncovalent donor Ub interactions with UbcH5B and both subunits of the RING domain dimer that stabilize the globular body and C-terminal tail of Ub. Mutations that disrupt these noncovalent interactions or RING dimerization reduce UbcH5B approximately Ub binding affinity and ubiquitination activity. Moreover, NMR analyses demonstrate that BIRC7 binding to UbcH5B approximately Ub induces peak-shift perturbations in the donor Ub consistent with the crystallographically-observed Ub interactions. Our results provide structural insights into how dimeric RING E3s recruit E2 approximately Ub and optimize the donor Ub configuration for transfer.

BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer.,Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT Nat Struct Mol Biol. 2012 Sep;19(9):876-83. doi: 10.1038/nsmb.2379. Epub 2012 Aug, 14. PMID:22902369[15]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A. Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IkappaBalpha. J Biol Chem. 1999 May 21;274(21):14823-30. PMID:10329681
  2. Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon JC, Woods YL, Lane DP. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem. 2004 Oct 1;279(40):42169-81. Epub 2004 Jul 26. PMID:15280377 doi:10.1074/jbc.M403362200
  3. Windheim M, Peggie M, Cohen P. Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem J. 2008 Feb 1;409(3):723-9. PMID:18042044 doi:10.1042/BJ20071338
  4. Chiang MH, Chen LF, Chen H. Ubiquitin-conjugating enzyme UBE2D2 is responsible for FBXW2 (F-box and WD repeat domain containing 2)-mediated human GCM1 (glial cell missing homolog 1) ubiquitination and degradation. Biol Reprod. 2008 Nov;79(5):914-20. doi: 10.1095/biolreprod.108.071407. Epub 2008, Aug 13. PMID:18703417 doi:10.1095/biolreprod.108.071407
  5. Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, Meyer HE, Warscheid B, Sa-Miranda C, Azevedo JE. Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J Biol Chem. 2008 May 23;283(21):14190-7. doi: 10.1074/jbc.M800402200. Epub 2008 , Mar 22. PMID:18359941 doi:10.1074/jbc.M800402200
  6. Zeng W, Xu M, Liu S, Sun L, Chen ZJ. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell. 2009 Oct 23;36(2):315-25. doi: 10.1016/j.molcel.2009.09.037. PMID:19854139 doi:10.1016/j.molcel.2009.09.037
  7. Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, Xu M, Chen ZJ. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell. 2010 Apr 16;141(2):315-30. doi: 10.1016/j.cell.2010.03.029. PMID:20403326 doi:10.1016/j.cell.2010.03.029
  8. David Y, Ziv T, Admon A, Navon A. The E2 ubiquitin conjugating enzymes direct polyubiquitination to preferred lysines. J Biol Chem. 2010 Jan 8. PMID:20061386 doi:M109.089003
  9. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
  10. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
  11. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol. 2000 Nov 2;10(21):1359-66. PMID:11084335
  12. Ma L, Huang Y, Song Z, Feng S, Tian X, Du W, Qiu X, Heese K, Wu M. Livin promotes Smac/DIABLO degradation by ubiquitin-proteasome pathway. Cell Death Differ. 2006 Dec;13(12):2079-88. Epub 2006 May 26. PMID:16729033 doi:10.1038/sj.cdd.4401959
  13. Nachmias B, Lazar I, Elmalech M, Abed-El-Rahaman I, Asshab Y, Mandelboim O, Perlman R, Ben-Yehuda D. Subcellular localization determines the delicate balance between the anti- and pro-apoptotic activity of Livin. Apoptosis. 2007 Jul;12(7):1129-42. PMID:17294084 doi:10.1007/s10495-006-0049-1
  14. Nachmias B, Mizrahi S, Elmalech M, Lazar I, Ashhab Y, Gazit R, Markel G, Ben-Yehuda D, Mandelboim O. Manipulation of NK cytotoxicity by the IAP family member Livin. Eur J Immunol. 2007 Dec;37(12):3467-76. PMID:18034418 doi:10.1002/eji.200636600
  15. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat Struct Mol Biol. 2012 Sep;19(9):876-83. doi: 10.1038/nsmb.2379. Epub 2012 Aug, 14. PMID:22902369 doi:http://dx.doi.org/10.1038/nsmb.2379

4auq, resolution 2.18Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA